Gauge-Higgs Unification : - LHC and Dark Matter -

Yutaka Hosotani (Osaka University)

YH, Ko, Tanaka, 0908.0212 [hep-ph] (PLB) YH, Noda, Uekusa, 0912.1173 [hep-ph] (PTP)

Planck 2010, , CERN, 2 June 2010

SO(5)xU(1) gauge-Higgs unification in RS

Agashe, Contino, Pomarol 2005 Hosotani, Sakamura 2006 Medina, Shar, Wagner 2007 Hosotani, Oda, Ohmuma, Sakamura 2008 Hosotani, Noda, Uekusa 2009

SO(5)xU(1) gauge-Higgs unification in RS

Agashe, Contino, Pomarol 2005 Hosotani, Sakamura 2006 Medina, Shar, Wagner 2007 Hosotani, Oda, Ohmuma, Sakamura 2008 Hosotani, Noda, Uekusa 2009

SM content $\begin{array}{c} \text{Swiccontent} \\ \text{at low energies} \end{array} \begin{array}{c} \gamma \ , \ W \ , \ Z \\ H \end{array} \\ \begin{pmatrix} t_L \\ b_L \end{pmatrix} \ t'_R \ b'_R \ \begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} \ \nu'_{\tau R} \ \tau'_R \end{array}$

 $\begin{array}{c} \text{SM content} \\ \text{at low energies} \end{array} \begin{array}{c} \gamma \ , \ W \ , \ Z \\ H \end{array} \\ \left(\begin{array}{c} t_L \\ b_L \end{array} \right) \ t'_R \ b'_R \ \left(\begin{array}{c} \nu_{\tau L} \\ \tau_L \end{array} \right) \ \nu'_{\tau R} \ \tau'_R \end{array}$

4D anomaly cancellation in $SU(2)_L imes SU(2)_R imes U(1)$

Effective interactions

Hosotani, Kobayashi 2008

 $\mathcal{L}_{ ext{eff}} \sim -m_f(H)\,\overline{\psi}_f\psi_f$

$egin{aligned} {f Gauge-Higgs} & {f SM} \ m_f(H) \sim y_f f_H \sin\left(heta_H + rac{H}{f_H} ight) & y_f(v+H) \end{aligned}$

Higgs bosons become stable and become the Dark Matter.

Higgs bosons become stable and become the Dark Matter.

WMAP data fixes the Higgs mass.

Hosotani, Ko, Tanaka 0908.0212 [hep-ph]

Direct detection rate

arXiv:0912.3592 [astro-ph.CO] 18 Dec 2009

Two events in the signal region

How to see the Higgs bosons at LHC/ILC

Production:

How to see the Higgs bosons at LHC/ILC

Production:

K. Cheung, J. Song arXiv:1004.2783 hard at LHC, possible at ILC

Higgs bosons = gauge bosons

Higgs bosons = gauge bosons

Higgs naturally become stable.

Higgs bosons = gauge bosons

Higgs naturally become stable.

Dark Matter=Higgs $m_H \sim 70 \, { m GeV}$

Higgs bosons = gauge bosons

Higgs naturally become stable.

Dark Matter=Higgs $m_H \sim 70 \, {
m GeV}$

Collider signatures: Higgs, gauge couplings, KK modes

We might see extra dimensions !