FROM SOFT WALLSTO INFRARED BRANES

Gero von Gersdorff (École Polytechnique) Planck 2010

ArXiv I005.5I34 (hep-ph)

SOFT WALLS

SOFT WALLS

Soft Wall models are generalizations of RS that do not possess an IR brane

$$
d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2}
$$

SOFT WALLS

Soft Wall models are generalizations of RS that do not possess an IR brane

$$
d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2}
$$

- Requires presence of scalar field
- Generically leads to
curvature singularities

SOFT WALLS

Soft Wall models are generalizations of RS that do not possess an IR brane

$$
d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2}
$$

- Requires presence of scalar field
- Generically leads to curvature singularities

Singularities are "good" if
$e^{-A(y)} \rightarrow 0$ faster than $\left(y_{s}-y\right)^{\frac{1}{4}}$
Gubser'02, Forste et al '02 Cabrer, GG \& Quirós '09

WHY SOFT WALLS

WHY SOFT WALLS

- Soft Walls permit a richer spectrum than RSI

WHY SOFT WALLS

- Soft Walls permit a richer spectrum than RSI
- Soft Walls permit to study full (IR) RG flow of dual theories
- Meaning of IR brane BC?

WHY SOFT WALLS

- Soft Walls permit a richer spectrum than RSI
- Soft Walls permit to study full (IR) RG flow of dual theories
- Meaning of IR brane BC?
- Problem of IR brane: Planck suppressed operators become only TeV suppressed, predictions for $\mathrm{p}>\mathrm{TeV}$ hard (KK masses)
- Need to specify infinitely many operators?

WHY SOFT WALLS

- Soft Walls permit a richer spectrum than RSI
- Soft Walls permit to study full (IR) RG flow of dual theories
- Meaning of IR brane BC?
- Problem of IR brane: Planck suppressed operators become only TeV suppressed, predictions for $\mathrm{p}>\mathrm{TeV}$ hard (KK masses)
- Need to specify infinitely many operators?
- Soft Walls give "resolution" of IR brane

CLASSES OF SOFT WALLS

Soft Walls are rather restricted by demanding:

- A Gap in the spectrum should exist
- The singularity should be a "good"

Then, asymptotics near singularity fall into 2 classes

CLASSES OF SOFT WALLS

CLASSES OF SOFT WALLS

Proper Length coordinates
$d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

CLASSES OF SOFT WALLS

Proper Length coordinates
$d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

$$
e^{-A(y)} \sim\left(y_{s}-y\right)^{\frac{1}{\nu^{2}}}
$$

$$
\nu<2
$$

CLASSES OF SOFT WALLS

Proper Length coordinates $d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

$$
e^{-A(y)} \sim\left(y_{s}-y\right)^{\frac{1}{\nu^{2}}}
$$

$$
\nu<2
$$

CLASSES OF SOFT WALLS

Proper Length coordinates $d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

Conformably flat coordinates

$$
e^{-A(y)} \sim\left(y_{s}-y\right)^{\frac{1}{\nu^{2}}}
$$

$$
\begin{gathered}
\nu>1, z_{s}<\infty \\
e^{-A(z)} \sim\left(z_{s}-z\right)^{\frac{1}{\nu^{2}-1}}
\end{gathered}
$$

$$
\begin{gathered}
\nu=1, z_{s} \rightarrow \infty \\
e^{-A(z)} \sim e^{-(\rho z)^{\sigma}}, \quad \sigma \geq 1
\end{gathered}
$$

CLASSES OF SOFT WALLS

Proper Length coordinates $d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

Conformally flat coordinates

$$
e^{-A(y)} \sim\left(y_{s}-y\right)^{\frac{1}{\nu^{2}}}
$$

$$
\nu<2
$$

$$
\begin{gathered}
\nu>1, z_{s}<\infty \\
e^{-A(z)} \sim\left(z_{s}-z\right)^{\frac{1}{\nu^{2}-1}}
\end{gathered}
$$

$\nu<1$ or $\nu=1, \sigma<1$
No Mass Gap

$$
\begin{gathered}
\nu=1, z_{s} \rightarrow \infty \\
e^{-A(z)} \sim e^{-(\rho z)^{\sigma}}, \quad \sigma \geq 1
\end{gathered}
$$

CLASSES OF SOFT WALLS

Proper Length coordinates $d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

Conformally flat coordinates

$$
e^{-A(y)} \sim\left(y_{s}-y\right)^{\frac{1}{\nu^{2}}}
$$

$$
\nu<2
$$

$$
\nu<1 \text { or } \nu \neq 1, \sigma<1
$$

No / lass Gap

$$
\begin{gathered}
\nu>1, z_{s}<\infty \\
e^{-A(z)} \sim\left(z_{s}-z\right)^{\frac{1}{\nu^{2}-1}}
\end{gathered}
$$

$$
\begin{gathered}
\nu=1, z_{s} \rightarrow \infty \\
e^{-A(z)} \sim e^{-(\rho z)^{\sigma}}, \quad \sigma \geq 1
\end{gathered}
$$

CLASSES OF SOFT WALLS

Proper Length coordinates $d s^{2}=e^{-2 A(y)} d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d y^{2} \quad d s^{2}=e^{-2 A(z)}\left(d x^{\mu} d x^{\nu} \eta_{\mu \nu}+d z^{2}\right)$

Conformally flat coordinates

$$
e^{-A(y)} \sim\left(y_{s}-y\right)^{\frac{1}{\nu^{2}}}
$$

$$
\nu<2
$$

$$
\nu<1 \text { on } \nu \neq 1, \sigma<1
$$

No plass Gap

$$
\begin{gathered}
\nu=1, z_{s} \rightarrow \infty \\
e^{-A(z)} \sim e^{-(\rho z)^{\sigma}}, \quad \sigma \geq 1
\end{gathered}
$$

PLAN

PLAN

Integrate over the region near the singularity
$S=\int_{0}^{y_{s}} d^{5} x \mathcal{L}_{\text {bulk }} \longrightarrow S=\int_{0}^{y_{1}} d^{5} x\left[\mathcal{L}_{\text {bulk }}+\mathcal{L}_{\mathrm{SW}} \delta\left(y-y_{1}\right)\right]$
Equivalent description of SW in terms of IR brane

PLAN

Integrate over the region near the singularity
$S=\int_{0}^{y_{s}} d^{5} x \mathcal{L}_{\text {bulk }} \longrightarrow S=\int_{0}^{y_{1}} d^{5} x\left[\mathcal{L}_{\text {bulk }}+\mathcal{L}_{\mathrm{SW}} \delta\left(y-y_{1}\right)\right]$
Equivalent description of SW in terms of IR brane

- For y_{1} close to y_{s} close \mathbb{R} Lagrangian "universal"
- Facilitates comparison with standard 2 brane compactif.
- IR Lagrangian makes sense even for $p>T e V$
- Useful approximation scheme: Approximate "new" bulk by RS metric

SCALAR FIELDS

SCALAR FIELDS

$$
\mathcal{L}_{\text {bulk }}=\frac{1}{2} \sqrt{-g}\left(g^{M N} \partial_{M} \psi \partial_{N} \psi+M^{2} \psi^{2}\right)
$$

SCALAR FIELDS

$$
\mathcal{L}_{\text {bulk }}=\frac{1}{2} \sqrt{-g}\left(g^{M N} \partial_{M} \psi \partial_{N} \psi+M^{2} \psi^{2}\right)
$$

Holographycally project physics at $y>y_{\text {s }}$ onto hypersurface at y_{1}

SCALAR FIELDS

$$
\mathcal{L}_{\text {bulk }}=\frac{1}{2} \sqrt{-g}\left(g^{M N} \partial_{M} \psi \partial_{N} \psi+M^{2} \psi^{2}\right)
$$

Holographycally project physics at $y>y_{s}$ onto hypersurface at y_{1}

$$
\begin{aligned}
& \left(e^{2 A(y)} \partial_{\mu} \partial^{\mu}+\partial_{y}^{2}-4 A^{\prime}(y) \partial_{y}-M^{2}\right) K\left(x, x^{\prime} ; y\right)=0 \\
& K\left(x, x^{\prime} ; y_{1}\right)=\delta\left(x-x^{\prime}\right) \quad \psi(x, y)=\int d^{4} x^{\prime} K\left(x, x^{\prime} ; y\right) \psi\left(x^{\prime}, y_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { SCALAR FIELDS } \\
& \mathcal{C}_{\text {bulk }}=\frac{1}{2} \sqrt{-g}\left(g^{M N} \partial_{M} \psi \psi_{N} \psi+M^{2} \psi^{2}\right)
\end{aligned}
$$

Holographycally project physics at $y>y_{\mathrm{s}}$ onto hypersurface at y_{1}

$$
\begin{gathered}
\left(e^{2 A(y)} \partial_{\mu} \partial^{\mu}+\partial_{y}^{2}-4 A^{\prime}(y) \partial_{y}-M^{2}\right) K\left(x, x^{\prime} ; y\right)=0 \quad \text { Witten '98 } \\
K\left(x, x^{\prime} ; y_{1}\right)=\delta\left(x-x^{\prime}\right) \quad \psi(x, y)=\int d^{4} x^{\prime} K\left(x, x^{\prime} ; y\right) \psi\left(x^{\prime}, y_{1}\right)
\end{gathered}
$$

Plug back into action

SCALAR FIELDS

$$
\mathcal{L}_{\text {bulk }}=\frac{1}{2} \sqrt{-g}\left(g^{M N} \partial_{M} \psi \partial_{N} \psi+M^{2} \psi^{2}\right)
$$

Holographycally project physics at

 $y>y_{s}$ onto hypersurface at $y_{1}$$$
\begin{gathered}
\left(e^{2 A(y)} \partial_{\mu} \partial^{\mu}+\partial_{y}^{2}-4 \Lambda^{\prime}(y) \partial_{y}-M^{2}\right) K\left(x, x^{\prime} ; y\right)=0 \\
K\left(x, x^{\prime} ; y_{1}\right)=\delta\left(x-x^{\prime}\right) \quad \psi(x, y)=\int d^{4} x^{\prime} K\left(x, x^{\prime} ; y\right) \psi\left(x^{\prime}, y_{1}\right)
\end{gathered}
$$

Plug back into action

$$
\begin{gathered}
\mathcal{F}(p)=K^{\prime}\left(p, y_{1}\right) \\
\mathcal{S}_{\mathrm{SW}}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \sqrt{-g(y)} \mathcal{F}(p) \psi(-p, y) \psi(p, y) \delta\left(y-y_{1}\right)
\end{gathered}
$$

RESULTS FOR SWI, SW2

RESULTS FOR SWI, SW2

$$
\mathcal{S}_{\mathrm{SW}}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \sqrt{-g(y)} \mathcal{F}(p) \psi(-p, y) \psi(p, y) \delta\left(y-y_{1}\right)
$$

RESULTS FOR SWI, SW2

$$
\mathcal{S}_{\mathrm{SW}}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \sqrt{-g(y)} \mathcal{F}(p) \psi(-p, y) \psi(p, y) \delta\left(y-y_{1}\right)
$$

SWI $\mathcal{F}(p)=e^{A\left(z_{1}\right)} \frac{\sqrt{-p^{2}} J_{\alpha+1}\left(\sqrt{-p^{2}} \Delta_{z}\right)}{J_{\alpha}\left(\sqrt{-p^{2}} \Delta_{z}\right)} \quad \alpha=\frac{4-\nu^{2}}{2\left(\nu^{2}-1\right)}$:

RESULTS FOR SWI, SW2

$$
\mathcal{S}_{\mathrm{SW}}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \sqrt{-g(y)} \mathcal{F}(p) \psi(-p, y) \psi(p, y) \delta\left(y-y_{1}\right)
$$

SWI $\mathcal{F}(p)=e^{A\left(z_{1}\right)} \frac{\sqrt{-p^{2}} J_{\alpha+1}\left(\sqrt{-p^{2}} \Delta_{z}\right)}{J_{\alpha}\left(\sqrt{-p^{2}} \Delta_{z}\right)} \quad \alpha=\frac{4-\nu^{2}}{2\left(\nu^{2}-1\right)}$.

SW2 $\mathcal{F}\left(p^{2}\right)=e^{A\left(z_{1}\right)} \sqrt{-p^{2}} \tan \left(c_{\beta}\left[-\frac{p^{2}}{\rho^{2}}\right]^{\frac{1}{4 \beta}}\right) \quad \beta=\frac{\sigma-1}{2 \sigma}$

SPECTRUM SWI

SPECTRUM SWI

Approximate metric in "new" bulk $y<y 1$ by pure RS

SPECTRUM SWI

Approximate metric in "new" bulk $y<y 1$ by pure RS

$$
(M=0, \nu=1.3)
$$

- Approximation
- Numerical

SPECTRUM SWI

Approximate metric in "new" bulk $y<y 1$ by pure RS

$$
(M=0, \nu=1.3)
$$

- Approximation
- Numerical

Asymptotic Spectrum (n large)
Approximation $\quad m_{n} z_{s} / \pi=n+0.34$
Numerical $\quad m_{n} z_{s} / \pi=(10.40,50.37,100.36,500.35)$

SPECTRUM SW2

SPECTRUM SW2

$$
e^{-A(z)}=\frac{1}{k z} e^{-(\rho z)^{\sigma}}, \quad z_{1}=\rho^{-1}
$$

SPECTRUM SW2
 $$
e^{-A(z)}=\frac{1}{k z} e^{-(\rho z)^{\sigma}}, \quad z_{1}=\rho^{-1}
$$

Employing the approximation
Asymptotic spectrum (n large)

$$
m_{n}=\left(\frac{\pi n}{c_{\beta}}\right)^{2 \beta} \rho . \quad \beta=\frac{\sigma-1}{2 \sigma}
$$

SPECTRUM SW2
 $$
e^{-A(z)}=\frac{1}{k z} e^{-(\rho z)^{\sigma}}, \quad z_{1}=\rho^{-1}
$$

Employing the approximation
Asymptotic spectrum (n large)

$$
m_{n}=\left(\frac{\pi n}{c_{\beta}}\right)^{2 \beta} \rho . \quad \beta=\frac{\sigma-1}{2 \sigma}
$$

Compare with exact solution (analytic only for $\beta=\frac{1}{4}$)
Exact spectrum is $m_{n}=\sqrt{12 n} \rho$
Conicides with previous method since $c_{\frac{1}{4}}=\frac{\pi}{12}$

CONCLUSIONS

cONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR branes
- Technically, perform holographic projection onto hypersurface close to the singularity

cONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR branes
- Technically, perform holographic projection onto hypersurface close to the singularity
- Reliable IR brane Lagrangian, taking into account finite thickness of IR brane

cONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR branes
- Technically, perform holographic projection onto hypersurface close to the singularity
- Reliable IR brane Lagrangian, taking into account finite thickness of IR brane
- Approximation scheme, assuming bulk metric to be pure RS

cONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR branes
- Technically, perform holographic projection onto hypersurface close to the singularity
- Reliable IR brane Lagrangian, taking into account finite thickness of IR brane
- Approximation scheme, assuming bulk metric to be pure RS
- Spectrum can be calculated to good accuracy

CONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR branes
- Technically, perform holographic projection onto hypersurface close to the singularity
- Reliable IR brane Lagrangian, taking into account finite thickness of IR brane
- Approximation scheme, assuming bulk metric to be pure RS
- Spectrum can be calculated to good accuracy
- Future work: higher spin, symmetry breaking...

