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SOFT WALLS

Soft Wall models are generalizations of RS that do not
possess an IR brane ds? = e~ 2AW) g dzn,, + dy?
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¢ Requires presence
of scalar field

¢ Generically leads to

curvature singularities Gubser’02, Forste et al ’02
Cabrer, GG & Quiros 09

Singularities are “good’ If

e~ W) 0 faster than (ys — y)%
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WHY SOF T WALLS

» Soft Walls permit a richer spectrum than RS|
» Soft Walls permit to study full (IR) RG flow of dual theories

* Meaning of IR brane BCY

* Problem of IR brane: Planck suppressed operators become
only TeV suppressed, predictions for p>TleV hard (KK masses)

* Need to specify infinitely many operators?

» Soft Walls give “resolution” of IR brane
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Soft Walls are rather restricted by demanding:

& A Gap In the spectrum should exist
¢ [ he singularity should be a “good”

hen, asymptotics near singularity fall into 2 classes
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Proper Length coordinates

ds® = e_zA(y)d:U“dx’/nW + dy*
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Conformally flat coordinates
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Proper Length coordinates Conformally flat coordinates
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Integrate over the region near the singularity

quuivalent description of SWV in terms of IR brane
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Integrate over the region near the singularity
Ys Y1
o — / d5$ [fbulk S — / d533 [»Cbulk s 'CSW 5(9 = yl)]
0 0
\Equivalent description of SWV in terms of IR brane
J
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UV brane eff. IR "brane” [~ & For y;j close to ysclose IR
? Lagrangian “universal”
Aly) - & Facilitates comparison with
el standard 2 brane compacti.
P = -
£ - ¢ [R Lagrangian makes sense
=
4 even for p>TleV

2 o Useful approximation
scheme: Approximate “new"
- fbulk by RS metric
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Holographycally project physics at
y>Ys onto hypersurface at yi

\_

(€2A(y)a'ua“ -+ 85 =t 414/(3/)83/ = MQ) K(aj, QE,; y) — ([ Witten ’98

K(z,z';191) = §(z — z)

M / P K (2, 75 1) 1)

=,

J




SALAR FIEDEES

1
Louk = 5V =9 (¢ OupOny + M*P7)

Holographycally project physics at
y>Ys onto hypersurface at yi
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Witten '98
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Ssw = %/ (;i& v —9(y) F(®) (—p, v)¥(p, y) 6(y — y1)
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Approximate metric in “new’ bulk y<y1 by pure RS
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* Approximation
= Numerical

SPECTRUM SW

Approximate metric in “new’ bulk y<y1 by pure RS
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Asymptotic Spectrum (n large)

Approximation  mp2s/m = n + 0.34
Numerical m,zs/m = (10.40, 50.37, 100.36, 500.35)
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Employing the approximation

Asymptotic spectrum (n large)
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Compare with exact solution (analytic only for 8 = Z)

Exact spectrum s my, = VI12np
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Conicides with previous method since ¢
g




CONCLUSIONS



CONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR
branes

* Technically, perform holographic projection onto hypersurface
close to the singularity



CONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR
branes

* Technically, perform holographic projection onto hypersurface
close to the singularity

» Reliable IR brane Lagrangian, taking into account finrte thickness of
IR brane



CONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR
branes

* Technically, perform holographic projection onto hypersurface
close to the singularity

» Reliable IR brane Lagrangian, taking into account finrte thickness of
IR brane

* Approximation scheme, assuming bulk metric to be pure RS



CONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR
branes

* Technically, perform holographic projection onto hypersurface
close to the singularity

» Reliable IR brane Lagrangian, taking into account finrte thickness of
IR brane

* Approximation scheme, assuming bulk metric to be pure RS

» Spectrum can be calculated to good accuracy



CONCLUSIONS

- Soft Walls can be given an equivalent description in terms of IR
branes

* Technically, perform holographic projection onto hypersurface
close to the singularity

» Reliable IR brane Lagrangian, taking into account finrte thickness of
IR brane

* Approximation scheme, assuming bulk metric to be pure RS
» Spectrum can be calculated to good accuracy

* Future work: higher spin, symmetry breaking...



