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Soft Wall models are generalizations of RS that do not 
possess an IR brane ds2 = e−2A(y)dxµdxνηµν + dy2

UV IR

UVA(y) A(y)

◆ Requires presence
of scalar field
◆ Generically leads to
curvature singularities

Singularities are “good” if 

e−A(y) → 0 faster than (ys − y)
1
4

Gubser’02, Forste et al ’02
Cabrer, GG & Quirós ’09
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WHY SOFT WALLS

• Soft Walls permit a richer spectrum than RS1

• Soft Walls permit to study full (IR) RG flow of dual theories

• Meaning of IR brane BC?

• Problem of IR brane: Planck suppressed operators become 
only TeV suppressed, predictions for p>TeV hard (KK masses)

• Need to specify infinitely many operators?

• Soft Walls give “resolution” of IR brane
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Soft Walls are rather restricted by demanding:

  ◆ A Gap in the spectrum should exist
  ◆ The singularity should be a “good”

Then, asymptotics near singularity fall into 2 classes
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SW1
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Figure 1: Integrating over soft walls. The warp factor A(y) starts to deviate from the
RS solution A(y) = ky at y = y1 and diverges at y = ys. The region between y1 and
ys is integrated over and generates an effective IR brane at y1. The plot is an actual
representation of the SW1 model with ν = 1.3 and kys = 30.

equation 2

V (φ) = 3W ′(φ)2 − 12W (φ)2 . (2.1)

Potentials of this kind appear in certain 5d gauged supergravities [16]. Here, we will
simply consider Eq. (2.1) as a definition for the auxiliary quantity W that simplifies
the Einstein equations. In fact, making the additional assumptions of 4d Poincaré
invariance,3

ds2 = e−2A(y)ηµνdxµdxν + dy2 , (2.2)

the equations of motion (EOM) become

φ′(y) =
d

dφ
W (φ) , (2.3)

A′(y) = W (φ) . (2.4)

Introducing a boundary potential λ(φ) on the UV brane, the boundary value φ0 ≡ φ(0)
is determined by extremizing the 4d potential4

V4d(φ) = λ(φ) − 6W (φ) . (2.5)

Sometimes coordinates other than Eq. (2.2) are useful. In particular, we will also make
use of the conformally flat coordinates

ds2 = e−2A(z)
(

ηµνdxµdxν + dz2
)

, (2.6)

2We follow the convention of [5]. Other works differ in the normalization of the superpotential
and/or the field φ.

3Our convention is ηµν = (− + ++). All metrics are understood to be in the 5d Einstein frame.
4In addition one has to require V4d(φ0) = 0.

4

near z = zs.5 The SW2 background also behaves as

A(y) = − log

(

1 −
y

ys

)

, (2.11)

but the asymptotic form in conformally flat coordinates now depends on the subleading
behaviour of the superpotential, parametrized by the exponent β:

A(z) ∼











(ρz)
1

1−2β β < 1
2 ,

eρz β = 1
2 ,

(ρ[zs − z])
1

1−2β β > 1
2 .

(2.12)

At β > 1
2 , the location of the singularity becomes again finite, zs < ∞. We will not

consider this case here, as it is very similar to the SW1 models with ν > 1.
Notice that the models of Refs. [5,11,14] fall in the SW1 category whereas the ones

in Refs. [6, 8–10, 13] correspond to SW2 models.
Let us now proceed to integrate over the region y1 < y < ys and calculate the

effective IR-Lagrangian that describes the SW.

3 The SW Effective Lagrangian

Let us start by considering a scalar field in the SW background with action

S =

∫ ys

0

d5xLbulk , Lbulk =
1

2

√
−g

(

gMN ∂Mψ∂Nψ + M2ψ2
)

. (3.1)

We would like to integrate this between y1 and ys, and rewrite S as

S =

∫ y1

0

d5x [Lbulk + LSW δ(y − y1)] . (3.2)

Note that the bulk integration is now restricted to y < y1, where we might approximate
the background by a pure RS metric. The physics beyond y = y1 is contained in the
effective SW Lagrangian LSW.

To integrate out properly the physics beyond y1, one must solve the equations of
motion as a function of the field value at y = y1. Technically, we holographically project
the phsyics at y > y1 onto a hypersurface at y = y1. We proceed by calculating the
kernel [3]

(

e2A(y)∂µ∂µ + ∂2
y − 4A′(y)∂y − M2

)

K(x, x′; y) = 0 , (3.3)

with the boundary condition K(x, x′, y1) = δ(x − x′). We can then write

ψ(x, y) =

∫

d4x′K(x, x′; y)ψ(x′, y1) , (3.4)

5For ν = 1 the behaviour is A(z) = z + . . . as z → ∞.
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◆ For y1 close to ys close IR 
Lagrangian “universal”
◆ Facilitates comparison with 
standard 2 brane compactif.
◆ IR Lagrangian makes sense 
even for p>TeV
◆ Useful approximation 
scheme:  Approximate “new” 
bulk by RS metric

GG ’10
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Holographycally project physics at 
y>ys onto hypersurface at y1
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to find the solution to the EOM for ψ as a function of ψ(y1). To fully specify the
problem, we need to demand that the fields at y = ys behave regularly which gives us
another boundary condition on K. The equation for K, written in momentum space for
the 4d coordinates, gives two linearly independent solutions. Calling Kreg the solution
that is regular at y = ys, the boundary condition at y1 implies that

K(p, y) =
Kreg(p, y)

Kreg(p, y1)
. (3.5)

Plugging this back into the action we find

SSW =
1

2

∫

d4p

(2π)4

√

−g(y)F(p) ψ(−p, y)ψ(p, y) δ(y − y1) , (3.6)

where we have defined the ”form factor” 6

F(p) = K ′(p, y1) . (3.7)

Notice that F(p) is the inverse of the propagator 〈ψ(−p, y1)ψ(p, y1)〉 that would result
if ψ obeyed Neumann boundary conditions at y1. For some backgrounds, other coordi-
nates are more convenient. in particular, the equation of motion for K in conformally
flat coordinates reads

(

∂µ∂µ + ∂2
z − 3A′(z)∂z − e−2A(z)M2

)

K(x, x′; z) = 0 . (3.8)

In the following we will compute F in the two classes of SW’s introduced previously.

3.1 Soft Walls of type 1

We will take the full metric as

e−A(y) = e−ky

(

1 −
y

ys

)
1

ν2

, 1 ≤ ν < 2 . (3.9)

This background corresponds to an exact solution to the Einstein equations and was
extensively studied in Refs. [5] and [12]. The first factor can be attributed to the
negative bulk cosmological constant. The second factor is the (exact) back reaction of
a scalar field with a certain potential. The point ys marks the location of the singularity
and is taken to be kys ∼ O(30).

The definition of the scale z1 and y1 is a bit arbitrary. We will take it to be

z1 = k−1(kys)
1

ν2 ekys , zs = Γ(1 − 1
ν2 )z1 , (3.10)

where for reference we also give the explicit expression for zs. Notice that z1 < zs. It
has been found in Ref. [5] that the spectrum resulting from such a background can be

6There is a change of sign because the orientation of the hypersurface at y = y1 depends on whether
it is a viewed as a boundary of the space y > y1 or y < y1.
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Holographycally project physics at 
y>ys onto hypersurface at y1

Plug back into action

K(x, x′; y1) = δ(x− x′)

(

e2A(y)∂µ∂µ + ∂2
y − 4A′(y)∂y − M2

)
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ν2 )z1 , (3.10)

where for reference we also give the explicit expression for zs. Notice that z1 < zs. It
has been found in Ref. [5] that the spectrum resulting from such a background can be
characterized by a mass gap of the order ∼ z−1

1 and an asymptotic spacing ∆mn = π/zs

for n large. Only for ν = 1 the location of the singularity zs goes to infinity in conformal
coordinates (due to the pole of the Γ function), resulting in a continuum of states above
the gap. Notice that near the singularity the change of variables is governed by the
relation

ρ(zs − z) =
ν2

ν2 − 1

(

1 −
y

ys

)1− 1

ν2

, (3.11)

which is a good approximation for k(ys − y) ! 1. With the above definition for z1 it
follows that k∆y ≡ k(ys − y1) ! 1 with a mild ν dependence.

The solution for the kernel K in the background Eq. (3.9) can easily be calculated.
In the regime |p| $ M/(kz1) it is useful to switch to conformally flat coordinates and
solve Eq. (3.8) in the approximation Eq. (2.10) to obtain:7

Kreg(p, z) = (zs − z)−αJα(
√

−p2(zs − z)) , α =
4 − ν2

2(ν2 − 1)
, (3.12)

resulting in

F(p) = eA(z1)

√

−p2 Jα+1(
√

−p2 ∆z)

Jα(
√

−p2 ∆z)
, (3.13)

where ∆z = zs − z1, the wall thickness in conformal coordinates (this is different from
the phsyical brane thickness that is given by ∆y = ys − y1).
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Iα′(M ∆y)
. (3.15)

7Note that the Bessel functions encountered here have nothing to do with the Bessel functions
found in the bulk of the RS background.

8

This background corresponds to an exact solution to the Einstein equations and was
extensively studied in Refs. [5] and [12]. The first factor can be attributed to the
negative bulk cosmological constant. The second factor is the (exact) back reaction of
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RESULTS FOR SW1, SW2

to find the solution to the EOM for ψ as a function of ψ(y1). To fully specify the
problem, we need to demand that the fields at y = ys behave regularly which gives us
another boundary condition on K. The equation for K, written in momentum space for
the 4d coordinates, gives two linearly independent solutions. Calling Kreg the solution
that is regular at y = ys, the boundary condition at y1 implies that

K(p, y) =
Kreg(p, y)

Kreg(p, y1)
. (3.5)

Plugging this back into the action we find

SSW =
1

2

∫

d4p

(2π)4

√

−g(y)F(p) ψ(−p, y)ψ(p, y) δ(y − y1) , (3.6)

where we have defined the ”form factor” 6

F(p) = K ′(p, y1) . (3.7)

Notice that F(p) is the inverse of the propagator 〈ψ(−p, y1)ψ(p, y1)〉 that would result
if ψ obeyed Neumann boundary conditions at y1. For some backgrounds, other coordi-
nates are more convenient. in particular, the equation of motion for K in conformally
flat coordinates reads

(

∂µ∂µ + ∂2
z − 3A′(z)∂z − e−2A(z)M2

)

K(x, x′; z) = 0 . (3.8)

In the following we will compute F in the two classes of SW’s introduced previously.

3.1 Soft Walls of type 1

We will take the full metric as

e−A(y) = e−ky

(

1 −
y

ys

)
1

ν2

, 1 ≤ ν < 2 . (3.9)

This background corresponds to an exact solution to the Einstein equations and was
extensively studied in Refs. [5] and [12]. The first factor can be attributed to the
negative bulk cosmological constant. The second factor is the (exact) back reaction of
a scalar field with a certain potential. The point ys marks the location of the singularity
and is taken to be kys ∼ O(30).

The definition of the scale z1 and y1 is a bit arbitrary. We will take it to be

z1 = k−1(kys)
1

ν2 ekys , zs = Γ(1 − 1
ν2 )z1 , (3.10)

where for reference we also give the explicit expression for zs. Notice that z1 < zs. It
has been found in Ref. [5] that the spectrum resulting from such a background can be

6There is a change of sign because the orientation of the hypersurface at y = y1 depends on whether
it is a viewed as a boundary of the space y > y1 or y < y1.

7

where z2(p) > z1 defines the turning point V (z2) + p2 = 0. Near the singularity (i.e.,
z → ∞) one can approximate

V (z) ≈
9 ρ2

4 (1 − 2β)2
(ρz)

4β
1−2β , (3.20)

and obtain the form factor in the limit −p2 % ρ2

F(p2) = eA(z1)
√

−p2 tan

(

cβ

[

−
p2

ρ2

]
1

4β

)

, (3.21)

with the constant cβ defined as

cβ =
3
√

π

4

Γ( 1
4β − 1

2)

Γ( 1
4β )

(

2(1 − 2β)

3

)
1

2β

. (3.22)

4 Spectrum

The spectrum of KK modes can be obtained from the effective IR Lagrangian as follows.
Let us call ψn a solution to the wave equation in the bulk that satisfies the boundary
condition at y = 0 (z = z0). Then, variation of the action Eq. (3.2) leads to the IR
boundary condition at y1 (z1)

ψ′

n(y1) = F(−m2
n)ψn(y1) , eA(z1)ψ′

n(z1) = F(−m2
n)ψn(z1) . (4.1)

In particular, for a scalar in a pure RS background with Dirichlet BCs at the UV brane
one obtains the well known solution

ψn(z) = z2
[

Yq(mnz0)Jq(mnz) − Jq(mnz0)Yq(mnz)
]

, q =
√

4 + M2/k , (4.2)

Then, using Eqns. Eq. (3.12), (4.1) and (4.2), for mn ' k one has for the SW1 back-
ground

(

2 − q

z1mn
+

Jq−1(mnz1)

Jq(mnz1)

)

=
Jα+1(mn∆z)

Jα(mn∆z)
. (4.3)

We can compare these findings with the numerical result. The exact numerical eigen-
values [5] of a scalar in the background Eq. (3.9), with M = 0 and ν = 1.3, are plotted
in Fig. 2, together with those obtained with the form factor method, Eq. (4.3). The
first modes are a little off due to the neglect of the subleading terms of the metric near
the singularity. The deviation is about 20% for the lightest mode and about 1% for the
10th mode. Furthermore, the asymptotic8 spectrum is

zsmn =

(

n +
α − q − 1

2

)

π . (4.4)

10

β =
σ − 1
2σ

SW2

This background corresponds to an exact solution to the Einstein equations and was
extensively studied in Refs. [5] and [12]. The first factor can be attributed to the
negative bulk cosmological constant. The second factor is the (exact) back reaction of
a scalar field with a certain potential. The point ys marks the location of the singularity
and is taken to be kys ∼ O(30).

The definition of the scale z1 and y1 is a bit arbitrary. We will take it to be

z1 = k−1(kys)
1

ν2 ekys , zs = Γ(1 − 1
ν2 )z1 , (3.10)

where for reference we also give the explicit expression for zs. Notice that z1 < zs. It
has been found in Ref. [5] that the spectrum resulting from such a background can be
characterized by a mass gap of the order ∼ z−1

1 and an asymptotic spacing ∆mn = π/zs

for n large. Only for ν = 1 the location of the singularity zs goes to infinity in conformal
coordinates (due to the pole of the Γ function), resulting in a continuum of states above
the gap. Notice that near the singularity the change of variables is governed by the
relation

ρ(zs − z) =
ν2

ν2 − 1

(

1 −
y

ys

)1− 1

ν2

, (3.11)

which is a good approximation for k(ys − y) ! 1. With the above definition for z1 it
follows that k∆y ≡ k(ys − y1) ! 1 with a mild ν dependence.

The solution for the kernel K in the background Eq. (3.9) can easily be calculated.
In the regime |p| $ M/(kz1) it is useful to switch to conformally flat coordinates and
solve Eq. (3.8) in the approximation Eq. (2.10) to obtain:7

Kreg(p, z) = (zs − z)−αJα(
√

−p2(zs − z)) , α =
4 − ν2

2(ν2 − 1)
, (3.12)

resulting in

F(p) = eA(z1)

√

−p2 Jα+1(
√

−p2 ∆z)

Jα(
√

−p2 ∆z)
, (3.13)

where ∆z = zs − z1, the wall thickness in conformal coordinates (this is different from
the phsyical brane thickness that is given by ∆y = ys − y1).

On the other hand, the regime of small momentum, p % M/(kz1) is accessible in
the y-coordinates

Kreg(0, y) = (ys − y)−α′

Iα′(M(ys − y)) , α′ =
4 − ν2

2ν2
. (3.14)

The p = 0 part of the form factor, i.e. the effective IR brane mass is thus given by

MIR ≡ F(0) = −M
Iα′+1(M ∆y)

Iα′(M ∆y)
. (3.15)

7Note that the Bessel functions encountered here have nothing to do with the Bessel functions
found in the bulk of the RS background.
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Figure 2: Exact spectrum of the SW1 model (blue squares) and the approximation
Eq. (4.3) (red circles) for ν = 1.3, M = 0. Note the mas gap, i.e. the lightest mode, is
larger than the asymptotic spacing, a characteristic feature of the SW1 models. In this
example the gap is about twice the spacing.

Numerically, for large n we obtain eigenvalues mnzs/π = (10.40, 50.37, 100.36, 500.35),
indicating convergence of the shift towards the asymptotic value α−1

2 = 0.34. Other
values of M and ν show a similar behaviour.

Turning to the SW2 models, we use the form factor Eq. (3.21) to write the spectrum
as

(

2 − q

µn
+

Jq−1(µn)

Jq(µn)

)

= tan

(

cβ µ
1

2β
n

)

, (4.5)

where µn = mn/ρ = mnz1. Notice that for β < 1
2 , as we are assuming here, the left hand

side of Eq. (4.5) can be neglected for large masses and we simply obtain asymptotically

mn =

(

π n

cβ

)2β

ρ . (4.6)

Notice that c−2β
β is an O(1) constant. Let’s compare this with the exact eigenvalues.

We will restrict to the case β = 1
4 , M = 0 which allows us to determine the spectrum

analytically.9 In fact there exists an exact solution to the massless scalar EOM in the
background Eq. (3.17) in terms of the confluent hypergeometric function U(a, b, z),

ψreg
n (z) = U

(

−
m2

n

12ρ2
,−1, 3ρz

)

, (4.7)

8Note that this is not a true asymptotic value for n → ∞ but rather for the range ρ $ mn $ k.
For mn % k the asymptotic shift w.r.t. n can actually be computed as α

2
− 1

4
.

9The value β = 1

4
corresponds to the interesting case of linear ”Regge trajectories”, i.e., m2

n ∼ n.
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Eq. (4.3) (red circles) for ν = 1.3, M = 0. Note the mas gap, i.e. the lightest mode, is
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2 = 0.34. Other
values of M and ν show a similar behaviour.
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as

(

2 − q

µn
+

Jq−1(µn)

Jq(µn)

)

= tan

(

cβ µ
1

2β
n

)

, (4.5)

where µn = mn/ρ = mnz1. Notice that for β < 1
2 , as we are assuming here, the left hand

side of Eq. (4.5) can be neglected for large masses and we simply obtain asymptotically

mn =

(

π n

cβ

)2β

ρ . (4.6)

Notice that c−2β
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4 , M = 0 which allows us to determine the spectrum

analytically.9 In fact there exists an exact solution to the massless scalar EOM in the
background Eq. (3.17) in terms of the confluent hypergeometric function U(a, b, z),
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−
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2 , as we are assuming here, the left hand

side of Eq. (4.5) can be neglected for large masses and we simply obtain asymptotically

mn =

(

π n

cβ
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ρ . (4.6)

Notice that c−2β
β is an O(1) constant. Let’s compare this with the exact eigenvalues.

We will restrict to the case β = 1
4 , M = 0 which allows us to determine the spectrum

analytically.9 In fact there exists an exact solution to the massless scalar EOM in the
background Eq. (3.17) in terms of the confluent hypergeometric function U(a, b, z),
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(

−
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Notice that c−2β
β is an O(1) constant. Let’s compare this with the exact eigenvalues.
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4 , M = 0 which allows us to determine the spectrum

analytically.9 In fact there exists an exact solution to the massless scalar EOM in the
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Figure 2: Exact spectrum of the SW1 model (blue squares) and the approximation
Eq. (4.3) (red circles) for ν = 1.3, M = 0. Note the mas gap, i.e. the lightest mode, is
larger than the asymptotic spacing, a characteristic feature of the SW1 models. In this
example the gap is about twice the spacing.
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12 n ρExact spectrum is
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=
π

12



CONCLUSIONS



CONCLUSIONS
• Soft Walls can be given an equivalent description in terms of IR 

branes

• Technically, perform holographic projection onto hypersurface 
close to the singularity



CONCLUSIONS
• Soft Walls can be given an equivalent description in terms of IR 

branes

• Technically, perform holographic projection onto hypersurface 
close to the singularity

• Reliable IR brane Lagrangian, taking into account finite thickness of 
IR brane



CONCLUSIONS
• Soft Walls can be given an equivalent description in terms of IR 

branes

• Technically, perform holographic projection onto hypersurface 
close to the singularity

• Reliable IR brane Lagrangian, taking into account finite thickness of 
IR brane

• Approximation scheme, assuming bulk metric to be pure RS



CONCLUSIONS
• Soft Walls can be given an equivalent description in terms of IR 

branes

• Technically, perform holographic projection onto hypersurface 
close to the singularity

• Reliable IR brane Lagrangian, taking into account finite thickness of 
IR brane

• Approximation scheme, assuming bulk metric to be pure RS

• Spectrum can be calculated to good accuracy



CONCLUSIONS
• Soft Walls can be given an equivalent description in terms of IR 

branes

• Technically, perform holographic projection onto hypersurface 
close to the singularity

• Reliable IR brane Lagrangian, taking into account finite thickness of 
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• Approximation scheme, assuming bulk metric to be pure RS

• Spectrum can be calculated to good accuracy

• Future work: higher spin, symmetry breaking...


