A stringy top resonance from warped geometry Babiker Hassanain University of Oxford B. Hassanain, J. March-Russell, J. Rosa, JHEP 0907:077,2009

Motivation

We hope that the Standard Model can be realized in String Theory.

Consequence is: Standard Model particles have string-oscillator excitations (Reggeons).

Most string theory vacua have curved regions of spacetime (throats), because of flux stabilizing moduli (extra-dimensions).

Warping may solve hierarchy problem
 (Randall & Sundrum), if throat long enough.

Important to study the phenomenology of SM excitations in warped throats.

RSI model

The very simplest throat geometry (constant -ve curvature) is the Randall-Sundrum solution.

String Excitations in Randall-Sundrum

- Expect a proper string realization of RS (intersecting D3/D7 branes) to yield Regge excitations of all the SM fields.
- In flat space ([Cullen, Perelstein, Peskin], [Friess, Han, Hooper],
 [Anchordoqui, Goldberg, Lust, Nawata, Taylor, Steiberger]) we only have interesting pheno if $M_s \sim TeV$
- Difficult (currently) to obtain top-down description of these Reggeons in curved space.
- SM fields in the 5D bulk (fermions + gauge fields) with Higgs on the I.R. brane.

Fermion Excitations

Consider the excitations of the fermions (u,d,....,t), which are in 5D bulk of the space.

 \circ They have 5D mass parameters $M_u \cdots M_t$.

 \odot Each SM fermion has 5D string resonance (copy) with identical quantum numbers, BUT spin = 3/2 and 5D mass $M_q^*=M_q+M_s$.

 ${\small {\rm (o)}} M_u \neq M_d \neq M_t$ to obtain correct SM 4D masses.

String mass M_s is flavour-blind. Depends on the precise way in which fermions are obtained (flavour branes wrapping cycles....).

• For 4D pheno, to get masses of 4D SM fermions \mathcal{M}_q and their 4D resonances $\mathcal{M}_{q'}^*$ must solve the 5D equations of motion. $\Gamma^{\alpha\beta\gamma} \left(D_{\beta} + \frac{1}{3}M_q^*\Gamma_{\beta}\right)\Psi_{\gamma} = 0$

 ${\it @}$ The results depend on the mass scales: k= curvature scale, $M_s=$ String scale.

Naively $M_s/k \sim (g_s N)^{1/4} \rightarrow m_q^* > M_{KK}$ = mass of spin-1/2 KK modes.

 ${\it @}$ But this is too naive: $M_s=s\,k$, $s\sim {\cal O}(1)$ and really it is a parameter of the model.

@ Focus on right-handed spin-3/2 top t_R^st .

mass of t_R^* in 4D

All masses warped down from Planck -> TeV. Top-3/2 is lighter than all others for much of parameter space, and lighter than KK modes for some of it (if we want 4D SM fermion masses).

Top-3/2 phenomenology

Mass of Top-3/2 can be low O(TeV).

Observe Decay channels: $t_R^* \to tg, W^+b, tZ, tH$

Top-gluon channel is a dimension-5 operator, very interesting signal. W b channel due to mixing of t_R^* and t_R .

Top-3/2 is SU(3) colour triplet, so can be pair-produced at LHC. Model-independent process, so theoretically clean.

Pair Production

Higher spin theories violate unitarity. Here violation above $\sqrt{s}\simeq 7M$, so we set partonic cross-section to zero above this scale.

Tuesday, 1 June 2010

Results

For W b decay channel, assuming top-3/2 production has same K-factor as top production, Tevatron direct detection bound is

 $m_t^* \ge 350 \, GeV$

For observability at LHC, again under same assumptions, we require

 $m_t^* \le 1.35 \, TeV$

0

0

Conclusions

 ${\rm I}$ String Resonances in throats WARPED DOWN TO TEV, even for $M_s \sim {\rm Planck}.$

In flat space, only accessible if $M_s \sim O(\text{TeV})$.

- t_R^* good place to start as generically lightest
 + can be lighter than spin-1/2 KK modes.
- At LHC pair-production is promising & modelindependent. Study top-gluon decay channel.
- Single production more model-dependent, but also interesting (Stringy Dim(5) operators).

 Work on other stringy aspects of throats (Perelstein and Spray, Reece and Wang)

Single production of top3/2

