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Can we find a well motivated DM model with no 
dark sector and with more robust CR signals?
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Outline
• Intro: the model aspect: RS- address 

hierarchy, nice flavor; GUT => Proton 
stability (gauged B)  => Stable DM. 

• Need to embed custodial Zb ̄b 
symmetry into GUT                                             

• Light Radion (~100 GeV) => 
Sommerfeld Enhancement (no dark 
sector)

• Signature of the model                                      
1) Signals in GCR                           
(also constraints from Relic Density  
& Direct Detection)                                          
2) Signals @ LHC

• Summary
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Intro: realistic RS scenario with SM in the bulk

•Realistic EWSB model with fermions and gauge bosons in the bulk, incorporating 
custodial SU(2) symmetry Agashe, Delgado, May and Sundrum

  IR
brane

Higgs

•Needs U(1)B symmetry gauged in the bulk to suppress proton decay, which need to 
be broken at the UV brane (For RSGUT, broken to Z3 => DM)

•Not clear how to unify it

Agashe, Contino, Da Rold and Pomarol

• AShift in Zb¯b is larger than that allowed by EWPT for KK scale lower than 5 TeV: 
custodial symmetry to protect a shift in Zb¯b is needed

Agashe and Servant

  UV
brane
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Pati-Salam+custodial.

Warm up; canonical representation (no custodial)
(on the UV)

SU(4)c ∼ SU(3)C × U(1)X SU(2)L SU(2)R

LH 4 ∼ 3− 1
3
+ 11 2 1

RH 4 ∼ 3− 1
3
+ 11 1 2

H 1 2 2

Table 1: Canonical representations for SM fermions and Higgs: the subscripts denote the
�

8/3 X

charge.

3.2 Custodial Pati-Salam Model

We begin by constructing a custodial model based on partial unification, namely, the Pati-Salam

gauge group: SU(4)C ×SU(2)L×SU(2)R we later discuss how to fully unify it. For the implemen-

tation of the custodial protection for Zbb̄ coupling, the required charges are:

• T3R = −1/2 for (t, b)L and thus T3R = 0, −1 for tR and bR to obtain the top, bottom masses8,

respectively.

Thus, we must modify the Pati-Salam representations. Moreover, the SU(2)L and SU(2)R 5D

gauge couplings must be equal.

3.2.1 Composite charge leptons

Once we resort to non-canonical representations, we can choose

• T3R = 0 for τR (and other RH charged leptons)

in order to provide custodial protection for its coupling to Z as well. In this way, τR can be localized

closer to the TeV brane, i.e., we can contemplate larger couplings of KK τR to gauge KK modes

(in particular, Z
�). Then we must choose T3R = +1/2 for (ν, τ)L to obtain charged lepton masses.

(Note that the custodial symmetry cannot protect shift in Z coupling to LH charged leptons and

LH neutrinos simultaneously since we require T3R = T3L for this purpose and LH charged lepton

and LH neutrino obviously have different T3L, but the same T3R)

One may wonder whether the possibility of having composite leptons, say τRs, is constraint

indirectly by other means for instance constant terms. The LEP bounds on contact terms can be

read from [61]. In our case the dominant production of the KK neutral gauge fields would be via

photon-ρ mixing, hence vector like in nature, and the outgoing tau’s would have V + A coupling.

Thus the bound on the effective scale, suppressing the higher dimension e
+
e
−τ+τ− operator, is

read from the LEP bound on the RR + LR contact terms which resulting with a lower bound of
8in the model where top and bottom masses are obtained using the same 5D (t, b)L multiplet.

11

SU(4)×SU(2)L×SU(2)R

 SU(2)L doublet fermions: T3R = 0 and T3L = ±1/2      ;        RH fermions: T3R = ±1/2 and T3L = 0

X are the charges under the non-QCD U(1) generator present in SU(4)

  UV
brane

  IR
braneAdS5

bulk

Lgauge + Lfermion is the bulk lagrangian. Lfermion is given in Eq. 2.3. We now focus on Lgauge:

Lgauge =
√

g
(

−
1

4
TrWLMNW MN

L −
1

4
TrWRMNW MN

R

−
1

4
TrFMNFMN + |DMΣ|2 − V (Σ) +

ai

Λ3/2
ΣFiMNFMN

i

)

(5.2)

where the indices are contracted with the bulk metric gMN . WLMN , WRMN and FMN are the field

strengths for, respectively, SU(2)L, SU(2)R and SU(4)c. Σ is a scalar transforming under the Pati-

Salam gauge symmetry. Its sole purpose is to spontaneously break Pati-Salam to the SM gauge group

at a mass scale below k. Specifically, 〈Σ〉 ≡ v3/2
Σ so that non standard gauge fields acquire a bulk mass

∼ MGUT ∼ g5Dv3/2
Σ . The higher-dimensional operator coupling Σ to the gauge fields gives threshold-

type corrections to the low-energy gauge couplings (see Eq. 11.1) and is suppressed by Λ, the 5D

cut-off of the RS effective field theory. We will discuss the motivation for this bulk breaking of GUT

in section 7.

LUV includes the necessary fields to spontaneously break U(1)R × U(1)B−L to U(1)Y on the UV

brane and LIR contains the SM Higgs field, a bidoublet of SU(2)L×SU(2)R (there is no Higgs triplet):

LIR = LHiggs + LY ukawa, (5.3)

LY ukawa generates Yukawa couplings for fermions, it will be given in Eq. 5.12 and

LHiggs =
√
−gIR

(

DµH
[

DµH
]† − V (H)

)

. (5.4)

gIR is the induced flat space metric in the IR brane. After the usual field redefinition of H [1], Eq. (5.4)

takes its canonical form:

LHiggs = DµH
[

DµH
]† − V (H) (5.5)

with 〈H〉 =

(

0

v/
√

2

)

, v ≈ 250 GeV.

We assume that brane-localized kinetic terms for bulk fields are of order loop processes involving

bulk couplings and are therefore neglected in our analysis.

5.1 Breaking of Pati–Salam on the UV brane

SU(4)c × SU(2)L × SU(2)R is first broken to SU(3)c × SU(2)L ×U(1)R ×U(1)B−L
8 by assigning the

following boundary conditions to the µ-components of the gauge fields [17, 18, 19].

UV IR

Xs − +

W 1,2
R µ − +

other gauge fields + +

This can be done by either orbifold BC or more general BC which approximately correspond to (−+)

BC. On the other hand, the breaking of U(1)R × U(1)B−L → U(1)Y cannot be achieved by orbifold

BC. There are two linear combinations of W 3
R µ and Vµ, where Vµ denotes the (B − L) gauge boson.

8Here, we keep the usual standard appellation “B−L” denoting the extra U(1) contained in Pati–Salam and SO(10),

however, it is clear that the “B” in “B−L” has nothing to do with the extra baryon number symmetry U(1)B we impose

to protect proton stability.

– 12 –

Agashe and Servant
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DM has vanishing coupling to Z’

SO(10) ⊃ SU(4)×SU(2)L×SU(2)R

the hypercharge normalization is the 
same as that of SU(5) -> maintain at 
least SM level of coupling 
unification when fully unified into 
SO(10)

simplest full unification model

Protection for Z to τR pair is also possible
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Particle contents relevant for DM (in-)direct detection

SU(4)c ∼ SU(3)C × U(1)X SU(2)L SU(2)R

tR, ν � 15 ∼ 3−4
3
, 10... 1 1

(t, b)L 15 ∼ 3−4
3
,... 2 2

τR 4 ∼ 11,... 1 2
(ν, τ)L 4 ∼ 11,... 2 1

bR 15 ∼ 3−4
3
,... 1 3

H 1 2 2

Table 3: An example for a model with custodial representations for bL which allow for full uni-

fication. Charged leptons are not protected by the custodial symmetry and the ν �ν̄ �
Z

�
coupling

vanishes (see Tab. 6). The subscripts denote the
�

8/3 X charge.

SM tR, (t, b)L, τR, µR, W , Z, h

Non-SM Comments (quantum numbers)

ν �
DM: exotic RH ν (SM singlet) with B = 1/3

φ radion (scalar with Higgs-like coupling to SM)

Z
�

extra/non-SM U(1) in GUT

Xs leptoquark GUT gauge boson

Table 4: Particle content relevant for DM (in-)direct detection.

• ν �
is the SM singlet (i.e., with quantum numbers of a RH neutrino) GUT partner of tR

9
, but

with (exotic) baryon number of 1/3. ν �
R denotes its RH chirality and has a profile localized

near the TeV brane (like for any other KK mode), irrespective of bulk mass (c) parameter

for this GUT multiplet
10

which dictates the profile of tR.

• Following the notation of references [23], ν̂ �
R denotes the Dirac partner (left-handed) of ν �

R
11

.

Its profile does depend on c for tR in such a way that it moves farther away from the TeV

brane as tR gets closer to the TeV brane – the ν �
mass (∝ this overlap) decreases in this

process.

• Xs (mostly relevant for the unifiable model with no DM-Z
�
coupling) and Z

�
(relevant for

the partially unified model where DM-Z
�

coupling controls the resulting relic density) are,

respectively, the non-abelian and U(1) gauge bosons (beyond gluons) contained in SU(4)c and

have masses (almost) same as those of KK modes of SM gauge bosons (denoted by MKK).

9Since, with custodial protection of Zbb̄ coupling, (t, b)L can also be close to the TeV brane, it is possible that the
LZP comes from this multiplet instead of tR. The analysis for the two cases is similar.

10we neglect any GUT breaking here in the 5D fermion mass parameters within a GUT multiplet unlike references
[23] where small splittings of this type were allowed.

11ν�L was used in references [23] for SU(2)L doublet from (t, b)L multiplet.

14
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Light Radion and Sommerfeld Enhancement

•Radion mode - fluctuation in the distance of two branes

•Radius must be stabilized (Symmetry of AdS space needs to be broken)

•Radion interaction to the matter field is proportional to 5D energy 
momentum tensor                                                                                                        

  UV
brane

  IR
brane
 Higgs

AdS5

bulk

r
Λr

mf f̄f
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Light Radion and Sommerfeld Enhancement

• Naively, a pseudo-scalar with a goldstone like derivative coupling to matter 
cannot be a light force carrier: 

• it leads to spin-dependent potential, which vanishes when averaged over 
angles => no long range interaction with s-wave => no SE

• Radion is an exception, since it’s a pseudo-scalar from spontaneous 
symmetry breaking of space-time symmetry

λ =
MDM

Λr
= O(1)
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Light Radion and Sommerfeld Enhancement

• Naively, a pseudo-scalar with a goldstone like derivative coupling to matter 
cannot be a light force carrier: 

• it leads to spin-dependent potential, which vanishes when averaged over 
angles => no long range interaction with s-wave => no SE

• Radion is an exception, since it’s a pseudo-scalar from spontaneous 
symmetry breaking of space-time symmetry

λ =
MDM

Λr
= O(1)

Based on AdS/CFT 
correspondence, this nice 

feature of the
radion as a mediator of SE is dual 

to light dilaton exchange in 4D 
CFT (see Rattazzi’s tlak)
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Light Radion, SE and Direct Detection

vicinity. The location of the i’th resonance branch in the (M/Λr, mr/M) plane follows contours of

constant values of �φ = �φ,i, with �φ,i ≈ 0.6, 0.15, 0.07, ... arising in the numerical solution to the

Yukawa problem. Using Eq.(11) we see that the resonance branches correspond to parabolas,

mr

M
≈ Ci

�
M

Λr

�2

, (13)

where the Cis are constant numbers. Sample values are C1 ≈ 0.05, C2 ≈ 0.01 for the first (upper)

two resonance branches. We see that in order to obtain SE > 103, significant correlation is required

between mr, M and Λr. Below we exploit this correlation to extract benchmark model points with

interesting consequences for indirect signatures in galactic cosmic rays. The benchmark models we

will consider can easily be located on the right panel of Figure 2, in which we plot the SE in the

(mr, M) plane for a fixed value of Λr = 3 TeV. Direct detection constraints (discussed in the next

section) are also superimposed on this panel.
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Figure 2: Left: SE factor projected onto the (mr/M, M/Λr) plane. Right: SE and direct detection
bounds, projected onto the (mr, M) plane at fixed Λr = 3 TeV.

4.2 Dark Matter relic density and direct detection limits

4.2.1 Relic Density

As already anticipated the DM abundance is correlated with the DM-Z � coupling size, in particular

whether T ν�
3R vanishes or not, we discuss the two cases separately in the following. The analytical

19
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•For small radion mass (below 
50 GeV), direct detection is 
dominated by t-channel radion 
exchange

# evts in DD experiment ~ n x sigma ~ sigma / M

•(For very heavy radion, Z-
mediated through mixing of Z’-
Z becomes more important, if 
DM-nu’ coupling is non-
vanishing)

9Tuesday, June 1, 2010



Relic density constraint- case for non-vanishing 
DM-Z′ coupling (sizable leptonic BR)

• DM abundance is correlated with the DM-Z′ coupling size,                                                               
in particular whether T3Rν′ vanishes or not

500 1,000 1,500 2,000 2,500 3,000 3,500

10 4

10 3

10 2

10 1

100

101

M
DM

 [GeV]

 h
2

 h2 vs. M
DM

  for 35 reps. (with M
KK

= 3  and 4 TeV)

ZH and W+W

 h2 = 0.11

No p̄/p signal

ZH, W+W  and top pair combined

Direct Detection 
          (Z exch.)
  M

KK
 = 3TeV 
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Relic density constraint- case for non-vanishing 
DM-Z′ coupling (sizable leptonic BR)

• DM abundance is correlated with the DM-Z′ coupling size,                                                               
in particular whether T3Rν′ vanishes or not

500 1,000 1,500 2,000 2,500 3,000 3,500

10 4
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10 1
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M
DM

 [GeV]

 h
2

 h2 vs. M
DM

  for 35 reps. (with M
KK

= 3  and 4 TeV)

ZH and W+W

 h2 = 0.11

No p̄/p signal

ZH, W+W  and top pair combined

Direct Detection 
          (Z exch.)
  M

KK
 = 3TeV 

Implies velocity-weighted 
annihilation cross section at 

cosmological era

WMAP
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Relic density constraint- case for non-vanishing 
DM-Z′ coupling (sizable leptonic BR)

• DM abundance is correlated with the DM-Z′ coupling size,                                                               
in particular whether T3Rν′ vanishes or not
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 h2 vs. M
DM
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KK

= 3  and 4 TeV)

ZH and W+W

 h2 = 0.11

No p̄/p signal

ZH, W+W  and top pair combined

Direct Detection 
          (Z exch.)
  M

KK
 = 3TeV 

resulting relic abundance is too low unless the DM mass is ultra light 
(tension with direct detection experiments)

Implies velocity-weighted 
annihilation cross section at 

cosmological era

WMAP
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Relic density constraint- case for non-vanishing 
DM-Z′ coupling (sizable leptonic BR)

• DM abundance is correlated with the DM-Z′ coupling size,                                                               
in particular whether T3Rν′ vanishes or not

500 1,000 1,500 2,000 2,500 3,000 3,500

10 4
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10 2

10 1

100
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M
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 [GeV]

 h
2

 h2 vs. M
DM

  for 35 reps. (with M
KK

= 3  and 4 TeV)

ZH and W+W

 h2 = 0.11

No p̄/p signal

ZH, W+W  and top pair combined

Direct Detection 
          (Z exch.)
  M

KK
 = 3TeV 

resulting relic abundance is too low unless the DM mass is ultra light 
(tension with direct detection experiments)

Need a solution to 
decrease annih. cross section 
to revive this type of model for 

leptonic signal!

Implies velocity-weighted 
annihilation cross section at 

cosmological era

WMAP
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Relic density constraint- case for vanishing DM-Z′ 
coupling (no leptonic BR)

•The most dominant annihilation channel is via t-channel Xs exchange 
channel into final state heavy quarks, say tRt ̄R

Figure 4: Relic density, Ωh2 vs. the DM mass for the unifiable model with ν � ∈15, gLR = 0.35− 1
and MKK = 3, 4 TeV.

22

9.1 Estimates of cross-sections

We start with estimates of the couplings of the LZP and of its annihilation and elastic scattering

cross-sections. We will then present the details in the following sections and appendices.

All gauge and fermion KK modes, including the LZP, as well as the Higgs, the top and possibly

the left-handed bottom quarks, are localized near the TeV brane. Consequently, any coupling between

these particles is large. The LZP can annihilate significantly through an s-channel exchange of Z ′

gauge boson (into top quarks and Higgs) as well as a t-channel exchange of KK Xs gauge boson into

a zero mode tR as shown in Fig. 2 (recall that the LZP is from the tR multiplet). As explained below,

those couplings are typically 5 or 6 times larger than SM couplings. However, the particle which is

exchanged has a mass of at least 3 TeV. Effectively, the annihilation cross section has the same size as

the one involving SM couplings and particles of mass of order 500 GeV. We are indeed dealing with

“weak scale” annihilation cross sections.

In addition, we will show that the LZP has a significant coupling to the Z. Since the LZP can

be naturally much lighter than gauge KK modes, s-channel annihilation through Z-exchange can also

have the right size. This coupling also results in a cross-section for direct detection via t-channel Z

exchange which is of weak-scale size.

We explain in appendix E why we can neglect the annihilation through Higgs exchange in our

analysis.

Note that at the lowest order, the LZP cannot annihilate with itself into SM particles but only

with its antiparticle, due to Z3 conservation.

ν ′
R

ν ′
R

Z ′

t , b

t , b

ν ′
R

ν ′
R

h+ , h∗

h− , h

Z ′

ν ′
R

ν ′
R

Z

f , t , b

f , t , b

tR

tR

X ′
s

ν ′
R

ν ′
R

ν ′
R

ν ′
R

H

t

t

ν ′
R

ν ′
R

H

W+ , Z

W− , Z

Figure 2: LZP annihilation channels. f denotes all SM fermions other than top and bottom.

Let us begin by estimating the couplings of the LZP. The ν ′
RXst

(0)
R coupling, appearing in the t-

channel annihilation, is given by the overlap of the three wavefunctions (see Eq. A.23). The coupling

– 23 –

0.35< gLR <1
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Relic density constraint- case for vanishing DM-Z′ 
coupling (no leptonic BR)

•The most dominant annihilation channel is via t-channel Xs exchange 
channel into final state heavy quarks, say tRt ̄R

Figure 4: Relic density, Ωh2 vs. the DM mass for the unifiable model with ν � ∈15, gLR = 0.35− 1
and MKK = 3, 4 TeV.
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•Sizable region of the 
parameter space with
                                                             
-correct DM abundance
                                                    
-and consistent with 
bounds from direct 
detection experiments

9.1 Estimates of cross-sections

We start with estimates of the couplings of the LZP and of its annihilation and elastic scattering

cross-sections. We will then present the details in the following sections and appendices.

All gauge and fermion KK modes, including the LZP, as well as the Higgs, the top and possibly

the left-handed bottom quarks, are localized near the TeV brane. Consequently, any coupling between

these particles is large. The LZP can annihilate significantly through an s-channel exchange of Z ′

gauge boson (into top quarks and Higgs) as well as a t-channel exchange of KK Xs gauge boson into

a zero mode tR as shown in Fig. 2 (recall that the LZP is from the tR multiplet). As explained below,

those couplings are typically 5 or 6 times larger than SM couplings. However, the particle which is

exchanged has a mass of at least 3 TeV. Effectively, the annihilation cross section has the same size as

the one involving SM couplings and particles of mass of order 500 GeV. We are indeed dealing with

“weak scale” annihilation cross sections.

In addition, we will show that the LZP has a significant coupling to the Z. Since the LZP can

be naturally much lighter than gauge KK modes, s-channel annihilation through Z-exchange can also

have the right size. This coupling also results in a cross-section for direct detection via t-channel Z

exchange which is of weak-scale size.

We explain in appendix E why we can neglect the annihilation through Higgs exchange in our

analysis.

Note that at the lowest order, the LZP cannot annihilate with itself into SM particles but only

with its antiparticle, due to Z3 conservation.
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Let us begin by estimating the couplings of the LZP. The ν ′
RXst

(0)
R coupling, appearing in the t-

channel annihilation, is given by the overlap of the three wavefunctions (see Eq. A.23). The coupling

– 23 –

0.35< gLR <1
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• Local antimatter injection rates

• Robust signals

• Antiproton signals

• Constraints from photons and neutrino

Signals in Galactic CRs
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Benchmark model points

Model L: M = 600 GeV, mr > 40 GeV
In principle one can obtained a sizable SE while decreasing Λr, however, in this 
case we find tension with direct detection bounds.

Model H: M = 2400 GeV, mr = O(100) GeV
In this case theres a wide range of radion masses and corresponding Λr which 
yield a sizable SE and consistent with direct experiment.
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principle one can obtained a sizable SE while decreasing ΛR, however, in this case we find

tension with direct detection bounds.

Model H: M = 2400 GeV, mr = O(∞��) GeV, which corresponds to the RH circle on Fig. 4. In

this case theres a wide range of radion masses and corresponding ΛR which yield a sizable SE

and consistent with direct experiment.

In both cases the annihilation is dominated by ν̄ �ν � → tRt̄R via t-channel Xs exchange, the couplings

are given in table 6 and according to Eq. (14) which link the top compositeness with the DM mass.

The CR injection spectra of stable final states are plotted in Figure 5 for the various benchmark

points. These spectra, together with the DM mass and Sommerfeld enhancement factor serve as

the particle physics input required for the calculation of indirect detection signals.
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Figure 5: Decayed final state annihilation spectra for the two benchmark models.

25

Local antimatter injection rates

3

Decayed final state annihilation spectra: These spectra, together with the DM mass and 
Sommerfeld enhancement factor serve as the particle physics input required for the 
calculation of indirect detection signals
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Can we make astrophysicists jump from their seats?

Katz, Blum & Waxman2 Robust astro signals
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pbar/p (fairly generic, constrained by Pamela up to (100GeV))
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Katz, Blum & Waxman2 Robust astro signals
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pbar/p (fairly generic, constrained by Pamela up to (100GeV))

Can we make astrophysicists jump from their seats?

Katz, Blum & Waxman

The robust upper bound on e+/pbar (unconstrained at the 
moment, possible but hard for us)

2 Robust astro signals
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pbar/p (fairly generic, constrained by Pamela up to (100GeV))

Can we make astrophysicists jump from their seats?

Katz, Blum & Waxman

The robust upper bound on e+/pbar (unconstrained at the 
moment, possible but hard for us)

2 Robust astro signals

What about e+ anomaly?
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pbar/p (fairly generic, constrained by Pamela up to (100GeV))

Can we make astrophysicists jump from their seats?

Katz, Blum & Waxman

The robust upper bound on e+/pbar (unconstrained at the 
moment, possible but hard for us)

2 Robust astro signals
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• high energy antiprotons above a few of GeV suffer only small energy 
losses as they travel through the Galaxy

• the secondary anti-proton flux up to E ∼ 200 GeV can be computed in a 
model independent manner, based on the existing CR nuclei data

• need to introduce only one free parameter to the calculation;

•  namely an energy independent effective volume factor encoding 
the ratio between the different spatial extensions of the DM and 
the spallation sources.

Katz, Blum & Waxman

pbar/p: the other way to go (slightly model dep)

Unfortunately, none of the three assumptions above is necessarily valid. Indeed, regarding

the propagation, the transport of CRs may exhibit some time variations, and at least some spatial

variations must occur in, for example, the diffusion coefficient (if the common assumption of diffusive

motion is at all valid). In terms of available propagation models, the class of models in which the

above assumptions are satisfied includes, for example, the Leaky Box Model (LBM) as well as

the fashionable disc+halo diffusion model with a homogeneous diffusion coefficient. Regarding

the secondary source spectrum, some spatial dependence in the spectrum of primary CRs fueling

this source is also possible. Nevertheless, the set of three assumptions presented above is still

considerably more general and easier to test than the detailed assumptions adopted in most of the

current literature. We now show how these assumptions allow us to derive constraints on the DM

annihilation cross section.

Under the above assumptions, the spectral distortion due to propagation in the Galaxy cancels

out when one formulates the density ratio of secondary to primary antiprotons. The local density

ratio between the primary and secondary components takes the form:

np̄,DM (�,�rsol)
np̄,sec(�,�rsol)

= fV
Qp̄,DM (�,�rsol)
Qp̄,sec(�,�rsol)

, (30)

with the energy independent volume factor

fV =
�

d3rqDM (�r)Ḡ(�rsol,�r)�
d3rqsec(�r)Ḡ(�rsol,�r)

. (31)

For a DM annihilation source, we have qDM (�r) = n2
o(�r). We can write the anti-proton to proton

flux ratio as follows,

Jp̄(�,�rsol)
Jp(�,�rsol)

=
�

Jp̄(�,�rsol)
Jp(�,�rsol)

�

sec

×
�
1 + fV

Qp̄,DM (�,�rsol)
Qp̄,sec(�,�rsol)

�
. (32)

The first factor on the right hand side is the secondary anti-proton to the primary proton flux

ratio. This quantity is constrained by the B/C data, leaving no free parameters. We conclude that

under a moderate set of rather general assumptions, the anti-proton to proton flux ratio including

a DM contribution can be computed based on the relatively well constrained local injection rates

and only one additional parameter, fV , encapsulating all the details of the propagation.

As mentioned above, the class of models for which Eq. (32) holds includes the disc+halo diffusion

model with a homogeneous diffusion coefficient [96, 97]. In Appendix B we use this model as a

concrete example, deriving the precise realization of Eq. (32). We find, as expected, fV in the range

∼ 10− 100, depending mainly on the size of the CR confinement halo with an order one correction

depending on the DM distribution.

In Fig. we plot the antiproton to proton flux ratio with a DM component, corresponding to our

benchmark models. The curves including DM contribution are obtained by suppressing the pure

32

16Tuesday, June 1, 2010



Antiproton signals in GCRs
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Figure 7: The antiproton to proton flux ratio with a DM component, corresponding to our bench-
mark models. The curves including a DM contribution are obtained by suppressing the background
prediction to 75% of its central value, and boosting the local DM injection rate by the factor
SE × fV . This factor encodes the combination of propagation, via the volume factor fV , and of
the Sommerfeld enhancement SE. The shaded region indicates an 40% uncertainty estimate for
the background calculation. Data points are from published and preliminary PAMELA data.
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d3rqsec(�r)Ḡ(�rsol,�r)

. (31)

For a DM annihilation source, we have qDM (�r) = n2
o(�r). We can write the anti-proton to proton

flux ratio as follows,

Jp̄(�,�rsol)
Jp(�,�rsol)

=
�

Jp̄(�,�rsol)
Jp(�,�rsol)

�

sec

×
�
1 + fV

Qp̄,DM (�,�rsol)
Qp̄,sec(�,�rsol)

�
. (32)

The first factor on the right hand side is the secondary anti-proton to the primary proton flux
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a DM contribution can be computed based on the relatively well constrained local injection rates

and only one additional parameter, fV , encapsulating all the details of the propagation.

As mentioned above, the class of models for which Eq. (32) holds includes the disc+halo diffusion

model with a homogeneous diffusion coefficient [96, 97]. In Appendix B we use this model as a

concrete example, deriving the precise realization of Eq. (32). We find, as expected, fV in the range
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Gamma ray constraints from FERMI and HESS

• evaluated with an NFW DM halo profile and the maximal Sommerfeld factor allowed 
by the GC data 
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Figure 6: Gamma ray constraints from FERMI and HESS.
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Can we test it?
2) LHC Signals

• Light radion O(100) GeV will be interesting particle to look for. (depending 
on it’s mass): specially if mr~O(100) GeV: gg → r → γγ  & gg → r → ZZ → 4l 
channels promising  (Csaki, Hubisz, SJL)

• Difficult to produce DM, or GUT gauge bosons @ LHC

• ~3 TeV Z’ decaying into boosted        pairτR
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Figure 5: In the plot on the left,we show a comparison of the ratio of discovery significance
for a radion vs. a Higgs of the same mass, Rγγ

S , with the scenario where the SM fields are
all localized on the IR brane (the dashed curves). In the plot on the right we show the
ratio of discovery significance R4l

S . We assume that there are no tree level brane localized
kinetic terms for the gluon or photon. For the displayed values of Λr, the corresponding
values of 1/R′ are 408, 816, 2041, and 4082 GeV.

Higgs boson discovery of the same mass for the gg → r → γγ channel is given in [?]:

Rγγ
S ≡

S(r)

S(hSM)
=

Γ(r → gg) B(r → γγ))

Γ(hSM → gg) B(hSM → γγ))

√

max(Γtot(hSM), ∆Mγγ)

max(Γtot(r), ∆Mγγ)
, (7.1)

with a similar formula applying for the significance ratio in the r → ZZ discovery channel.

The factor inside the square root measures the ratio of the relative effective total
widths of the Higgs and radion as they would appear in the detector. For smaller widths,
the signal to background ratio is higher, although this effect is limited by the detector
resolution for diphoton (or 4 lepton) invariant masses. If the total width is smaller than
the energy resolution, the entire signal is contained in a single bin, and one then needs to
consider the background over that entire region (rather than only over the energy range
given by the width of the decaying particle).

In Fig. ?? we plot Rγγ
S and R4l

S in the case that there are no tree level brane localized
kinetic terms for either the gluon or photon. We find that for low values of Λr, the ratio
Rγγ

S is always greater than one, implying that one is more likely to find a radion of this
mass than a Higgs of the same mass. For some values of the radion mass, Rγγ

S , is enhanced
compared to the case with all fields localized on the IR brane, up to a factor of 3 for
large values of Λr. In the r → 4l channel, there is a generic enhancement of the discovery
potential in comparison with the IR brane localized SM scenario due to the larger r → gg
branching fraction.

In Fig. ?? we plot Rγγ
S for different combinations of tree level brane localized kinetic

terms for both the gluon and the photon, taking Λr = 2 TeV. One can see that turning on
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custodial protection -> composite tau -> high pT tau
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Summary

• The recent/future experimental searches for anti-matter in cosmic rays up to 
energies of roughly a TeV motivates studies of particle physics models of dark 
matter (DM) where DM annihilation dynamics could yield observed signal. 

• RS GUT with order of 100 GeV radion can result in a sizable Sommerfeld 
enhancement of the annihilation cross-section.

• With a possible large boost, we can have an interesting anti-proton signal in the 
future.

•  Custodial symmetry for Z → b ̄b is required in order to ameliorate little hierarchy 
problem, and we show how to incorporate it

• For LHC, radion will be an interesting signature. Highly boosted tau’s (and 
positron signal in GCR) might be possible, but need to overcome constraints for 
WMAP (relic abundance)
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RS GUT and Dark Matter

(broken by a scalar 
field in a special way)

• However, KK mode of X, Y gauge bosons are localized in IR (TeV) brane

• Split multiplets for proton stability (GUT breaking on boundary: Hall, Nomura): 
quark and lepton zero-modes from different multiplets

• Need to U(1)B; assign multiplets by baryon-number of zero-mode => break it on the 
UV brane

if leptons and quarks are unified in the same mutiplet, KK modes will mediate proton decay with only Yukawa suppression

Agashe, Servant

break the GUT group down to the 
SM by boundary conditions

22Tuesday, June 1, 2010



RS GUT and Dark Matter

(broken by a scalar 
field in a special way)

Not enough protection since brane-localized mass terms can mix the (KK) 
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DM candidate: ν′ - Lightest Z3 charged Particle

• Extra particles (including X, Y gauge bosons) in the GUT model are charged 
under the following Z3 symmetry:

• DM candidate: ν′R is the SM singlet GUT partner of tR (i.e., with quantum 
numbers of a RH neutrino), but with (exotic) baryon number of 1/3. 

• ν′R : KK fermion with (-,+) boundary condition => its mass depending on bulk 
mass (c) parameter for GUT multiplet which dictates the profile of tR

expressions for the various annihilation cross section can be found in [23], here we only discuss the

main qualitative feature of the models parameter space. We compute the annihilation cross-section

in the mass using MicrOMEGAs [52] for the numerical evaluation of the freeze–out DM abundance.

Brane localized kinetic term (BKT) can be used to control the total annihilation cross section, to

some extent, however, below for simplicity we have assumed vanishing BKT.12 One important

feature of our models is that our DM candidate mass, being the RH top partner, is correlated with

the amount of compositeness of tR, which in turns controls the relic density [23]:

mDM(c) ≈






0.65 (c + 1) MKK if c > −0.25

0.83
�

c + 1
2 MKK if −0.25 > c > −0.5

0.83
�

c2 − 1
4 MKK exp

�
kπR

�
c + 1

2

��
if c < −0.5

(14)

where MKK is the leading order (++) KK gauge boson mass and c stands for the tR bulk mass. For

instance for c > −1/4 one finds mν� ≈ k̃π(1 + c)/2 and for −0.4 < c < −1/4, mν� ≈ 2k̃
�

1/2 + c,

with k̃ = k exp (−kπR).

Non vanishing DM-Z � coupling For T ν�
3R �= 0, we find quite generally13 that the resulting relic

abundance is too low unless the DM mass is ultra light (which leads to tension with direct detection

experiments as described below). This is associated with the large ν �ν̄ �Z � which is enhanced by a RS

volume factor14 ,
√

kπR ∼ 6 and the fact that cos2 θ� is significantly smaller than one (see Tab. 5),

for instance cos2 θ�
35 ∼ 1

7 . Depending on the mass of ν � compared to the intermediate particle, ν �ν̄ �

annihilate into the SM particles dominantly through either s-channel (for 2Mν� ≤MZ�) or t-channel

annihilation (for 2Mν� > MZ�). We find that in the former case the Z � becomes broad enough

such that resonance enhancement of the cross section strongly suppresses the relic abundance, for

MZ� ∼ 2Mν� . For Mν� � MZ� the off-resonance cross section is suppressed by M2
ν�/M2

Z� . Hence,

for Mν� � MZ�/5 the resulting density is in the right ball park. The case with more massive DM,

2Mν� > MZ� has no kinematical suppression factors and yield a negligible freeze–out density.

We show in Fig. 3 resulting ΩDMh2 for the partially unified model as a function of the DM

mass, for various, (++) gauge boson, KK scales. To demonstrate that the resulting relic abundance

is typically too low we show (in green) the corresponding relic density only due to annihilation into

the EW sector which is rather robust. In blue we show how the density is further suppressed when
12Too large BKT lower the mass scale of the corresponding KK excitation, therefore, cannot be used to suppress

the relic density unless one is willing to introduce a severe little hierarchy problem into the model. In such a case the
inclusion of custodial symmetry for Zbb̄ seems unnecessary.

13for simplicity we discuss here only the 35 model, however, similar results were obtained for other cases with non
vanishing DM-Z� coupling.

14One can in principle considering a smaller RS volume [35, 98] will help to suppress the rate. However, we have
verified, that since the unification scale is only two orders of magnitude below the UV scale the improvement is only
incremental, hence the conclusion is basically unchanged

20

=> the lightest Z3 charged particle (dubbed “LZP”) is stable

=> the more closely tR is localized toward IR brane, the lighter the mass of ν′R

Agashe, Servant

23Tuesday, June 1, 2010



DM candidate: ν′ - Lightest Z3 charged Particle

• Extra particles (including X, Y gauge bosons) in the GUT model are charged 
under the following Z3 symmetry:

• DM candidate: ν′R is the SM singlet GUT partner of tR (i.e., with quantum 
numbers of a RH neutrino), but with (exotic) baryon number of 1/3. 

• ν′R : KK fermion with (-,+) boundary condition => its mass depending on bulk 
mass (c) parameter for GUT multiplet which dictates the profile of tR

expressions for the various annihilation cross section can be found in [23], here we only discuss the

main qualitative feature of the models parameter space. We compute the annihilation cross-section

in the mass using MicrOMEGAs [52] for the numerical evaluation of the freeze–out DM abundance.

Brane localized kinetic term (BKT) can be used to control the total annihilation cross section, to

some extent, however, below for simplicity we have assumed vanishing BKT.12 One important

feature of our models is that our DM candidate mass, being the RH top partner, is correlated with

the amount of compositeness of tR, which in turns controls the relic density [23]:

mDM(c) ≈






0.65 (c + 1) MKK if c > −0.25

0.83
�

c + 1
2 MKK if −0.25 > c > −0.5

0.83
�

c2 − 1
4 MKK exp

�
kπR

�
c + 1

2

��
if c < −0.5

(14)

where MKK is the leading order (++) KK gauge boson mass and c stands for the tR bulk mass. For

instance for c > −1/4 one finds mν� ≈ k̃π(1 + c)/2 and for −0.4 < c < −1/4, mν� ≈ 2k̃
�

1/2 + c,

with k̃ = k exp (−kπR).

Non vanishing DM-Z � coupling For T ν�
3R �= 0, we find quite generally13 that the resulting relic
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for Mν� � MZ�/5 the resulting density is in the right ball park. The case with more massive DM,

2Mν� > MZ� has no kinematical suppression factors and yield a negligible freeze–out density.

We show in Fig. 3 resulting ΩDMh2 for the partially unified model as a function of the DM

mass, for various, (++) gauge boson, KK scales. To demonstrate that the resulting relic abundance

is typically too low we show (in green) the corresponding relic density only due to annihilation into

the EW sector which is rather robust. In blue we show how the density is further suppressed when
12Too large BKT lower the mass scale of the corresponding KK excitation, therefore, cannot be used to suppress

the relic density unless one is willing to introduce a severe little hierarchy problem into the model. In such a case the
inclusion of custodial symmetry for Zbb̄ seems unnecessary.

13for simplicity we discuss here only the 35 model, however, similar results were obtained for other cases with non
vanishing DM-Z� coupling.

14One can in principle considering a smaller RS volume [35, 98] will help to suppress the rate. However, we have
verified, that since the unification scale is only two orders of magnitude below the UV scale the improvement is only
incremental, hence the conclusion is basically unchanged

20

=> the lightest Z3 charged particle (dubbed “LZP”) is stable

=> the more closely tR is localized toward IR brane, the lighter the mass of ν′R

DM emergence is a spin-off of 
proton stability 

Agashe, Servant
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Pati-Salam Custodial GUT model
• Shift in Zb¯b is larger than that allowed by EWPT for KK scale lower than 5 TeV.

• A custodial symmetry to protect such a shift in Zb¯b was proposed which 
requires non-canonical EW quantum numbers. Agashe, Contino, Da Rold and Pomarol

This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling

Zψψ̄, where ψ denotes a generic SM fermion. At zero momentum, this coupling is given by
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where Q3
L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.
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L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
V = Q3

L + Q3
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1 Introduction

One of the most elegant solutions to the hierarchy problem is to consider that the Higgs boson,

the scalar field responsible for electroweak symmetry breaking (EWSB), is not a fundamental

particle. This approach is clearly inspired by QCD, where scalar and pseudoscalar states appear

as composites of the strong dynamics. In recent years there has been a revival of interest in this

approach. The important new ingredient has been calculability, achieved by using either the idea

of “collective breaking” [1] or extra dimensions.

As in the old technicolor [2] or composite Higgs models [3], the main challenge of these new

scenarios is to pass successfully all the electroweak precision tests (EWPT). This is a non-trivial

task, since in these theories deviations from the Standard Model (SM) predictions usually arise at

the tree level due to mixing effects between SM fields and the heavy states of the new sector. One

of the main difficulties is to avoid large deviations in the ZbLb̄L coupling, whose measured value

is in agreement with the SM prediction at the 0.25% level. This is difficult to overcome, since in

these models the top, being heavy, couples strongly to the new sector. Since bL is in the same weak

doublet as tL, it usually suffers from large modifications to its couplings.

In this article we will show that the custodial symmetry O(3), advocated long ago to protect

∆ρ [4], can also protect Zbb̄. In particular we will see that the ZbLb̄L coupling can be safe from

corrections and at the same time the SU(2)L-related couplings ZtLt̄L and WtLb̄L can receive sizable

modifications. As an example, we will present the explicit calculations of these effects in a 5D

scenario of EWSB. The custodial symmetry can also be used to protect the coupling of the bR to

the Z. However, the LEP and SLD experimental measurements of the forward-backward asymmetry

Ab
FB suggest that the coupling ZbRb̄R might deviate from its SM value. We will then study the

possibility of having large effects in ZbRb̄R of the right magnitude and sign as suggested by the

experimental data.

Our analysis can be useful for any scenario of EWSB that contains a new sector beyond the

SM (BSM) invariant under the global custodial symmetry. This sector is defined to include the

Higgs field as well. Examples are the strongly interacting sector of technicolor models, the extra

fields added in Little Higgs theories to avoid quadratic divergences, or the bulk of a warped extra

dimension present in some Higgsless [5] and composite Higgs [6, 7] models.

2 The coupling Zψψ̄ and the custodial symmetry

We will consider BSM sectors with the following global symmetry breaking pattern [4]:

O(4) → O(3) . (1)

2

This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling

Zψψ̄, where ψ denotes a generic SM fermion. At zero momentum, this coupling is given by

g

cos θW

[

Q3
L − Q sin2 θW

]

Zµψ̄γµψ , (2)

where Q3
L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.

Although PLR is a symmetry of the BSM sector, it is not, in general, respected by the coupling of

ψ to the BSM sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c., we must demand that

ψ is an eigenstate of PLR. This implies

TL = TR , T 3
R = T 3

L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
V = Q3

L + Q3
R is conserved, and
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Before EWSB we have Q3L = T3L, but this is 
not guaranteed anymore after EWSB.

therefore it cannot receive corrections:

δQ3
V = δQ3

L + δQ3
R = 0 . (4)

On the other hand, by PLR invariance we have that the shift in Q3
L must be equal to the shift

in Q3
R:

δQ3
L = δQ3

R . (5)

Eq. (4) and Eq. (5) imply that δQ3
L = 0. This proves that SM fermions that fulfill the condition (3)

have their coupling to the Z protected by the subgroup U(1)V ⊗ PLR of the custodial symmetry.

The second example of a symmetry that can protect Q3
L is that of the discrete transformation

|TL, TR;T 3
L, T 3

R〉 → |TL, TR;−T 3
L,−T 3

R〉, a subgroup of the custodial SU(2)V . We will denote this

symmetry by PC . Its action on 2-component spinors is given by PC = iσ1, while SO(3) vectors

transform with PC = Diag(1,−1,−1). According to our rule then, the SM W 3
L can be assigned an

odd parity under PC : W 3
L → −W 3

L. For ψ to be an eigenstate of this symmetry, it must have

T 3
L = T 3

R = 0 . (6)

If this is the case, we have that δQ3
L = 0 at any order. Indeed, if ψ is an eigenstate of PC , then

ψ̄γµψ is even under PC and it cannot couple to W 3
L that is odd. Thus, the coupling of the Z to

SM fermions that fulfill Eq. (6) is protected by the subgroup PC of the custodial symmetry.

It is important to notice that the symmetries discussed above can only protect the coupling

of the Z to fermions at zero momentum. However, momentum dependent corrections to Zψψ̄ are

parametrically suppressed in strongly coupled BSM sectors. For example, in the case of ZbLb̄L a

naive estimate gives δg/g ∼ (λt/gBSM )2 ξ−2
R (q2/Λ2

BSM ), where λt ∼ gBSM ξLξR is the top Yukawa

coupling, ξL (ξR) is the degree of mixing between tL (tR) and BSM states (0 ≤ ξL,R ≤ 1), and gBSM

is the coupling among the BSM particles. Therefore, δg/g can be sufficiently small for gBSM ' λt

(and ξR not too small).

3 Corrections to ZbLb̄L in custodial invariant models

The symmetry argument given in the previous section shows how to build Higgsless or composite

Higgs models in which Zbb̄ does not receive corrections from the BSM sector. Let us start with the

ZbLb̄L coupling. In these models it has been commonly assumed that bL transforms as a (2,1)1/6

representation of the SU(2)L⊗SU(2)R⊗U(1)X group. In that case, bL has the quantum numbers

TL = 1/2, TR = 0, T 3
L = −1/2 and T 3

R = 0, which fulfill neither the condition (3) nor (6). As a

consequence, ZbLb̄L is not protected by the custodial symmetry. Condition (3), however, suggests

us a better assignment for the bL quantum numbers:

TL = 1/2 = TR , and T 3
L = −1/2 = T 3

R . (7)
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1 Introduction

One of the most elegant solutions to the hierarchy problem is to consider that the Higgs boson,

the scalar field responsible for electroweak symmetry breaking (EWSB), is not a fundamental

particle. This approach is clearly inspired by QCD, where scalar and pseudoscalar states appear

as composites of the strong dynamics. In recent years there has been a revival of interest in this

approach. The important new ingredient has been calculability, achieved by using either the idea

of “collective breaking” [1] or extra dimensions.

As in the old technicolor [2] or composite Higgs models [3], the main challenge of these new

scenarios is to pass successfully all the electroweak precision tests (EWPT). This is a non-trivial

task, since in these theories deviations from the Standard Model (SM) predictions usually arise at

the tree level due to mixing effects between SM fields and the heavy states of the new sector. One

of the main difficulties is to avoid large deviations in the ZbLb̄L coupling, whose measured value

is in agreement with the SM prediction at the 0.25% level. This is difficult to overcome, since in

these models the top, being heavy, couples strongly to the new sector. Since bL is in the same weak

doublet as tL, it usually suffers from large modifications to its couplings.

In this article we will show that the custodial symmetry O(3), advocated long ago to protect

∆ρ [4], can also protect Zbb̄. In particular we will see that the ZbLb̄L coupling can be safe from

corrections and at the same time the SU(2)L-related couplings ZtLt̄L and WtLb̄L can receive sizable

modifications. As an example, we will present the explicit calculations of these effects in a 5D

scenario of EWSB. The custodial symmetry can also be used to protect the coupling of the bR to

the Z. However, the LEP and SLD experimental measurements of the forward-backward asymmetry

Ab
FB suggest that the coupling ZbRb̄R might deviate from its SM value. We will then study the

possibility of having large effects in ZbRb̄R of the right magnitude and sign as suggested by the

experimental data.

Our analysis can be useful for any scenario of EWSB that contains a new sector beyond the

SM (BSM) invariant under the global custodial symmetry. This sector is defined to include the

Higgs field as well. Examples are the strongly interacting sector of technicolor models, the extra

fields added in Little Higgs theories to avoid quadratic divergences, or the bulk of a warped extra

dimension present in some Higgsless [5] and composite Higgs [6, 7] models.

2 The coupling Zψψ̄ and the custodial symmetry

We will consider BSM sectors with the following global symmetry breaking pattern [4]:

O(4) → O(3) . (1)

2

This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling

Zψψ̄, where ψ denotes a generic SM fermion. At zero momentum, this coupling is given by
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where Q3
L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.

Although PLR is a symmetry of the BSM sector, it is not, in general, respected by the coupling of

ψ to the BSM sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c., we must demand that

ψ is an eigenstate of PLR. This implies

TL = TR , T 3
R = T 3

L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
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L + Q3
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as composites of the strong dynamics. In recent years there has been a revival of interest in this

approach. The important new ingredient has been calculability, achieved by using either the idea
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task, since in these theories deviations from the Standard Model (SM) predictions usually arise at

the tree level due to mixing effects between SM fields and the heavy states of the new sector. One

of the main difficulties is to avoid large deviations in the ZbLb̄L coupling, whose measured value

is in agreement with the SM prediction at the 0.25% level. This is difficult to overcome, since in

these models the top, being heavy, couples strongly to the new sector. Since bL is in the same weak
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modifications. As an example, we will present the explicit calculations of these effects in a 5D

scenario of EWSB. The custodial symmetry can also be used to protect the coupling of the bR to
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Ab
FB suggest that the coupling ZbRb̄R might deviate from its SM value. We will then study the
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O(4) → O(3) . (1)
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This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling

Zψψ̄, where ψ denotes a generic SM fermion. At zero momentum, this coupling is given by

g

cos θW

[

Q3
L − Q sin2 θW

]

Zµψ̄γµψ , (2)

where Q3
L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.

Although PLR is a symmetry of the BSM sector, it is not, in general, respected by the coupling of

ψ to the BSM sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c., we must demand that

ψ is an eigenstate of PLR. This implies

TL = TR , T 3
R = T 3

L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
V = Q3

L + Q3
R is conserved, and
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Before EWSB we have Q3L = T3L, but this is 
not guaranteed anymore after EWSB.

therefore it cannot receive corrections:

δQ3
V = δQ3

L + δQ3
R = 0 . (4)

On the other hand, by PLR invariance we have that the shift in Q3
L must be equal to the shift

in Q3
R:

δQ3
L = δQ3

R . (5)

Eq. (4) and Eq. (5) imply that δQ3
L = 0. This proves that SM fermions that fulfill the condition (3)

have their coupling to the Z protected by the subgroup U(1)V ⊗ PLR of the custodial symmetry.

The second example of a symmetry that can protect Q3
L is that of the discrete transformation

|TL, TR;T 3
L, T 3

R〉 → |TL, TR;−T 3
L,−T 3

R〉, a subgroup of the custodial SU(2)V . We will denote this

symmetry by PC . Its action on 2-component spinors is given by PC = iσ1, while SO(3) vectors

transform with PC = Diag(1,−1,−1). According to our rule then, the SM W 3
L can be assigned an

odd parity under PC : W 3
L → −W 3

L. For ψ to be an eigenstate of this symmetry, it must have

T 3
L = T 3

R = 0 . (6)

If this is the case, we have that δQ3
L = 0 at any order. Indeed, if ψ is an eigenstate of PC , then

ψ̄γµψ is even under PC and it cannot couple to W 3
L that is odd. Thus, the coupling of the Z to

SM fermions that fulfill Eq. (6) is protected by the subgroup PC of the custodial symmetry.

It is important to notice that the symmetries discussed above can only protect the coupling

of the Z to fermions at zero momentum. However, momentum dependent corrections to Zψψ̄ are

parametrically suppressed in strongly coupled BSM sectors. For example, in the case of ZbLb̄L a

naive estimate gives δg/g ∼ (λt/gBSM )2 ξ−2
R (q2/Λ2

BSM ), where λt ∼ gBSM ξLξR is the top Yukawa

coupling, ξL (ξR) is the degree of mixing between tL (tR) and BSM states (0 ≤ ξL,R ≤ 1), and gBSM

is the coupling among the BSM particles. Therefore, δg/g can be sufficiently small for gBSM ' λt

(and ξR not too small).

3 Corrections to ZbLb̄L in custodial invariant models

The symmetry argument given in the previous section shows how to build Higgsless or composite

Higgs models in which Zbb̄ does not receive corrections from the BSM sector. Let us start with the

ZbLb̄L coupling. In these models it has been commonly assumed that bL transforms as a (2,1)1/6

representation of the SU(2)L⊗SU(2)R⊗U(1)X group. In that case, bL has the quantum numbers

TL = 1/2, TR = 0, T 3
L = −1/2 and T 3

R = 0, which fulfill neither the condition (3) nor (6). As a

consequence, ZbLb̄L is not protected by the custodial symmetry. Condition (3), however, suggests

us a better assignment for the bL quantum numbers:

TL = 1/2 = TR , and T 3
L = −1/2 = T 3

R . (7)
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scenario of EWSB. The custodial symmetry can also be used to protect the coupling of the bR to

the Z. However, the LEP and SLD experimental measurements of the forward-backward asymmetry

Ab
FB suggest that the coupling ZbRb̄R might deviate from its SM value. We will then study the

possibility of having large effects in ZbRb̄R of the right magnitude and sign as suggested by the

experimental data.

Our analysis can be useful for any scenario of EWSB that contains a new sector beyond the

SM (BSM) invariant under the global custodial symmetry. This sector is defined to include the

Higgs field as well. Examples are the strongly interacting sector of technicolor models, the extra

fields added in Little Higgs theories to avoid quadratic divergences, or the bulk of a warped extra

dimension present in some Higgsless [5] and composite Higgs [6, 7] models.

2 The coupling Zψψ̄ and the custodial symmetry

We will consider BSM sectors with the following global symmetry breaking pattern [4]:

O(4) → O(3) . (1)
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This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling

Zψψ̄, where ψ denotes a generic SM fermion. At zero momentum, this coupling is given by
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Q3
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]

Zµψ̄γµψ , (2)

where Q3
L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.

Although PLR is a symmetry of the BSM sector, it is not, in general, respected by the coupling of

ψ to the BSM sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c., we must demand that

ψ is an eigenstate of PLR. This implies

TL = TR , T 3
R = T 3

L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
V = Q3

L + Q3
R is conserved, and
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Before EWSB we have Q3L = T3L, but this is 
not guaranteed anymore after EWSB.

therefore it cannot receive corrections:

δQ3
V = δQ3

L + δQ3
R = 0 . (4)

On the other hand, by PLR invariance we have that the shift in Q3
L must be equal to the shift

in Q3
R:

δQ3
L = δQ3

R . (5)

Eq. (4) and Eq. (5) imply that δQ3
L = 0. This proves that SM fermions that fulfill the condition (3)

have their coupling to the Z protected by the subgroup U(1)V ⊗ PLR of the custodial symmetry.

The second example of a symmetry that can protect Q3
L is that of the discrete transformation

|TL, TR;T 3
L, T 3

R〉 → |TL, TR;−T 3
L,−T 3

R〉, a subgroup of the custodial SU(2)V . We will denote this

symmetry by PC . Its action on 2-component spinors is given by PC = iσ1, while SO(3) vectors

transform with PC = Diag(1,−1,−1). According to our rule then, the SM W 3
L can be assigned an

odd parity under PC : W 3
L → −W 3

L. For ψ to be an eigenstate of this symmetry, it must have

T 3
L = T 3

R = 0 . (6)

If this is the case, we have that δQ3
L = 0 at any order. Indeed, if ψ is an eigenstate of PC , then

ψ̄γµψ is even under PC and it cannot couple to W 3
L that is odd. Thus, the coupling of the Z to

SM fermions that fulfill Eq. (6) is protected by the subgroup PC of the custodial symmetry.

It is important to notice that the symmetries discussed above can only protect the coupling

of the Z to fermions at zero momentum. However, momentum dependent corrections to Zψψ̄ are

parametrically suppressed in strongly coupled BSM sectors. For example, in the case of ZbLb̄L a

naive estimate gives δg/g ∼ (λt/gBSM )2 ξ−2
R (q2/Λ2

BSM ), where λt ∼ gBSM ξLξR is the top Yukawa

coupling, ξL (ξR) is the degree of mixing between tL (tR) and BSM states (0 ≤ ξL,R ≤ 1), and gBSM

is the coupling among the BSM particles. Therefore, δg/g can be sufficiently small for gBSM ' λt

(and ξR not too small).

3 Corrections to ZbLb̄L in custodial invariant models

The symmetry argument given in the previous section shows how to build Higgsless or composite

Higgs models in which Zbb̄ does not receive corrections from the BSM sector. Let us start with the

ZbLb̄L coupling. In these models it has been commonly assumed that bL transforms as a (2,1)1/6

representation of the SU(2)L⊗SU(2)R⊗U(1)X group. In that case, bL has the quantum numbers

TL = 1/2, TR = 0, T 3
L = −1/2 and T 3

R = 0, which fulfill neither the condition (3) nor (6). As a

consequence, ZbLb̄L is not protected by the custodial symmetry. Condition (3), however, suggests

us a better assignment for the bL quantum numbers:

TL = 1/2 = TR , and T 3
L = −1/2 = T 3

R . (7)
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This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling

Zψψ̄, where ψ denotes a generic SM fermion. At zero momentum, this coupling is given by
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where Q3
L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.

Although PLR is a symmetry of the BSM sector, it is not, in general, respected by the coupling of

ψ to the BSM sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c., we must demand that

ψ is an eigenstate of PLR. This implies

TL = TR , T 3
R = T 3

L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
V = Q3

L + Q3
R is conserved, and
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the scalar field responsible for electroweak symmetry breaking (EWSB), is not a fundamental

particle. This approach is clearly inspired by QCD, where scalar and pseudoscalar states appear

as composites of the strong dynamics. In recent years there has been a revival of interest in this

approach. The important new ingredient has been calculability, achieved by using either the idea

of “collective breaking” [1] or extra dimensions.

As in the old technicolor [2] or composite Higgs models [3], the main challenge of these new

scenarios is to pass successfully all the electroweak precision tests (EWPT). This is a non-trivial

task, since in these theories deviations from the Standard Model (SM) predictions usually arise at
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∆ρ [4], can also protect Zbb̄. In particular we will see that the ZbLb̄L coupling can be safe from

corrections and at the same time the SU(2)L-related couplings ZtLt̄L and WtLb̄L can receive sizable

modifications. As an example, we will present the explicit calculations of these effects in a 5D

scenario of EWSB. The custodial symmetry can also be used to protect the coupling of the bR to

the Z. However, the LEP and SLD experimental measurements of the forward-backward asymmetry

Ab
FB suggest that the coupling ZbRb̄R might deviate from its SM value. We will then study the

possibility of having large effects in ZbRb̄R of the right magnitude and sign as suggested by the

experimental data.

Our analysis can be useful for any scenario of EWSB that contains a new sector beyond the

SM (BSM) invariant under the global custodial symmetry. This sector is defined to include the

Higgs field as well. Examples are the strongly interacting sector of technicolor models, the extra

fields added in Little Higgs theories to avoid quadratic divergences, or the bulk of a warped extra

dimension present in some Higgsless [5] and composite Higgs [6, 7] models.

2 The coupling Zψψ̄ and the custodial symmetry

We will consider BSM sectors with the following global symmetry breaking pattern [4]:

O(4) → O(3) . (1)
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This breaking is equivalent to the more familiar custodial pattern SU(2)L⊗SU(2)R →SU(2)V to-

gether with a parity defined as the interchange L ↔ R (PLR). As we will see below, this discrete

symmetry plays an important role to protect the coupling of the Z to fermions from non-zero cor-

rections. The BSM sector also has to respect an SU(3)c⊗U(1)X symmetry corresponding to the

SM color group and an extra U(1) needed to fit the hypercharges of the SM fields (Y = T 3
R + X).

As usual [4], we will parametrize the symmetry breaking in Eq. (1) by a 2× 2 unitary matrix field

U transforming as a (2,2)0 under SU(2)L⊗SU(2)R⊗U(1)X , whose VEV is given by 〈U〉 = 1l.

Since the BSM sector is invariant under O(4), we can rotate to a basis in which each BSM

field (or operator), OBSM, has a definite left and right isospin quantum number, TL,R, and its

3rd component, T 3
L,R. We will assume that every SM field Φ is coupled to a single BSM field (or

operator): Lint = Φ†OBSM + h.c.. This assumption is always fulfilled in the BSM models that we

are interested in. It guarantees that we can univocally assign to each SM field definite quantum

numbers TL,R, T 3
LR, corresponding to those of the operator OBSM to which it couples. Notice that

this does not imply that the SM fields are in complete representations of SU(2)L⊗ SU(2)R, as it is

known not to be the case.

Let us consider the implications of the custodial symmetry O(3)=SU(2)V ⊗PLR on the coupling
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L and Q are respectively the 3rd-component SU(2)L charge and the electric charge of ψ.

Since the electric charge Q is conserved, possible modifications to the coupling Zψψ̄ can only arise

from corrections to Q3
L. Before EWSB we have Q3

L = T 3
L, but this is not guaranteed anymore

after EWSB. We will be interested only in non-universal corrections induced by the BSM fields,

and we will treat the SM W 3
L field as an external classical source which probes the left charge Q3

L.

This is consistent since corrections induced through the renormalization of the Z kinetic term are

universal.

We found two subgroups of the custodial symmetry SU(2)V ⊗ PLR that can protect Q3
L. The

first one is the subgroup U(1)L⊗U(1)R ⊗ PLR that it is broken by 〈U〉 down to U(1)V ⊗ PLR.

Although PLR is a symmetry of the BSM sector, it is not, in general, respected by the coupling of

ψ to the BSM sector. For PLR to be a symmetry also of Lint = ψ̄Oψ + h.c., we must demand that

ψ is an eigenstate of PLR. This implies

TL = TR , T 3
R = T 3

L , (3)

for the field ψ. If this is the case, the non-universal corrections to the charge Q3
L of ψ are zero.

The proof goes as follows. By U(1)V invariance, we have that Q3
V = Q3

L + Q3
R is conserved, and
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1 formulae for presentation

(tR, ν�) : diag(2, 1, 0,−1,−2)⊕ 2× 1

2
diag(−1

3
,−1

3
,−1

3
, 1)

(t, b)L :
1

2
diag(3, 1,−1,−3)⊕ 2× 1

2
diag(−1
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3
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(τ)R : diag(1, 0,−1)⊕ 0

2 Introduction

Recently there has been a lot of excitement over model building activities for devising a dark matter

(DM) particle model which could explain the recent PAMELA [1] and ATIC/FERMI/HESS [2,

3, 4, 5] measurements. While pulsars have been put forth as astrophysical source candidates

(see e.g. [6]), models with DM annihilation or decay have been proposed as a more fundamental

explanation [7, 8].[Add more references!] A common feature of the annihilation frameworks

is a need for a large boost factor in the annihilation cross section. This feature can be traced

back to the WMAP data, which fixes the annihilation cross section at the cosmological epoch to

�σv� ∼ few 10
−26cm3s−1

. For DM mass in the TeV range, the latter number implies positron (or any

anti-matter particle) injection rate lies orders of magnitude bellow the astrophysical background.

In order for DM annihilation models to be accountable for any indirect detection of anti-matter

particles such as positron, a light degree of freedom (force carrier) is needed to obtain a large

enhancement factor in the velocity weighted annihilation cross section relevant for the current epoch

compared to the cosmological value at freeze-out, via the Sommerfeld Enhancement (SE) [9].

In our view, none of the current data, even if real
1
, necessarily implies any sort of “anomaly”

with respect to what would be expected from “standard” astrophysics. Concerning the rising

pattern in the positron fraction, the first point one should keep in mind is that the actual positron

intensity does not exhibit any clear excess when contrasted with model independent estimates

[11]. This includes a crude comparison with measurements of unstable CR isotopes, the only

additional piece of CR data which directly involves propagation time scales. Besides the model

independent analysis, it has been argued that the PAMELA result could still be compatible even

1see e.g. [10] for cautionary notes
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2 Introduction

Recently there has been a lot of excitement over model building activities for devising a dark matter

(DM) particle model which could explain the recent PAMELA [?] and ATIC/FERMI/HESS [?,

?, ?, ?] measurements. While pulsars have been put forth as astrophysical source candidates

(see e.g. [?]), models with DM annihilation or decay have been proposed as a more fundamental

explanation [?, ?].[Add more references!] A common feature of the annihilation frameworks

is a need for a large boost factor in the annihilation cross section. This feature can be traced

back to the WMAP data, which fixes the annihilation cross section at the cosmological epoch to

�σv� ∼ few 10−26cm3s−1. For DM mass in the TeV range, the latter number implies positron (or any

anti-matter particle) injection rate lies orders of magnitude bellow the astrophysical background.

In order for DM annihilation models to be accountable for any indirect detection of anti-matter

particles such as positron, a light degree of freedom (force carrier) is needed to obtain a large

enhancement factor in the velocity weighted annihilation cross section relevant for the current epoch

compared to the cosmological value at freeze-out, via the Sommerfeld Enhancement (SE) [?].

In our view, none of the current data, even if real1, necessarily implies any sort of “anomaly” with

respect to what would be expected from “standard” astrophysics. Concerning the rising pattern in

the positron fraction, the first point one should keep in mind is that the actual positron intensity

does not exhibit any clear excess when contrasted with model independent estimates [?]. This

includes a crude comparison with measurements of unstable CR isotopes, the only additional piece

of CR data which directly involves propagation time scales. Besides the model independent analysis,

it has been argued that the PAMELA result could still be compatible even with simple diffusion

models, provided that the primary electron spectrum is soft [?, ?]. One must bear in mind, however,

that the rising positron fraction may just as well imply that the currently fashionable models for CR

propagation in the Galaxy are simply incorrect. Along these lines there are alternative astrophysical

interpretations, wherein the positrons are still of secondary origin [?, ?, ?, ?]. We note that, at
1see e.g. [?] for cautionary notes
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More interesting rep’ where coupling of Z to τR pair 
is also protected!

A custodial symmetry to protect such a shift in Zbb̄ was proposed in reference [25] which requires

non-canonical EW quantum numbers.

It is interesting that such a symmetry can also be extended to leptons in order to protect the

shift in Z coupling to leptons. Thus, leptons (in particular, τ) can be localized closer to the TeV

brane, resulting in larger (than canonical) couplings of gauge KK modes to τ . A significant DM

annhilation to τ via exchange of KK gauge bosons, therefore, might be possible, which may be

relevant for the PAMELA rise (or future signals). As further discussed below this possibility is

typically in tension with the observed DM relic density.

3.1 Canonical

Just to get oriented, the canonical choice for representations under Pati-Salam group, i.e., SU(4)C×
SU(2)L × SU(2)R are in table 1.

7
Namely, LH SM fermions, i.e., SU(2)L doublet quarks and

leptons, are SU(2)R singlets with T3R = 0. RH quarks and leptons, i.e., SU(2)L singlets, are

SU(2)R doublets with T3R = ±1/2 for RH up quark (or RH neutrino) and RH down quark (or RH

charged lepton). The SM hypercharge is then given by

Y = T3R −
�

2/3X (4)

where X are the charges under the non-QCD U(1) generator present in SU(4)c, i.e., SU(4)c ∼
SU(3)c × U(1)X . We have chosen X = diag

�
3/8 (−1/3,−1/3,−1/3, 1) when acting on 4 of

SU(4)c such that the normalization for this generator acting on 4 of SU(4)c is TrX2
= 1/2.

Thus, we have the breaking pattern: SU(4)c × SU(2)R → SU(3)c ×U(1)Y achieved by bound-

ary condition on the Planck brane. The Pati-Salam group is preserved by boundary conditions

on the TeV brane (of course Higgs vev breaks SU(2)L × SU(2)R → SU(2)V ). The gauge field

that corresponds to the combination of T3R and X which is orthogonal to hypercharge will be

denoted by Z �
. The couplings to Z �

are then given by (up to overlap factor denoted below by a)

(gR/ cos θ�
)
�
T3R − Y sin

2 θ��
, where sin

2 θ� ≡
�

3
2g2

4

�
/

�
3
2g2

4 + g2
R

�
and gR, g4 are the “4D” couplings

of SU(4)C and SU(2)R gauge groups, respectively (obviously the normalized U(1)X gauge coupling

is same as the SU(4)c one).

Note that, due to Pati-Salam being only partial unification of SM gauge groups, the SU(2)R

and SU(4)c gauge couplings are unrelated so that sin
2 θ�

is a free parameter. However, it was shown

in reference [35] that a SO(10)-type completion of Pati-Salam, i.e., full unification of SM gauge

groups, is very well-motivated due to the SUSY-level precision of the gauge coupling unification.

With this result in mind, we can set g4 = gR to find sin
2 θ�

= 3/5.

7
Of course, we can invoke split multiplets so that there can two – one for quarks and one for leptons – multiplets

of each type in the table.
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More interesting rep’ where coupling of Z to τR pair 
is also protected!

therefore it cannot receive corrections:

δQ3
V = δQ3

L + δQ3
R = 0 . (4)

On the other hand, by PLR invariance we have that the shift in Q3
L must be equal to the shift

in Q3
R:

δQ3
L = δQ3

R . (5)

Eq. (4) and Eq. (5) imply that δQ3
L = 0. This proves that SM fermions that fulfill the condition (3)

have their coupling to the Z protected by the subgroup U(1)V ⊗ PLR of the custodial symmetry.

The second example of a symmetry that can protect Q3
L is that of the discrete transformation

|TL, TR;T 3
L, T 3

R〉 → |TL, TR;−T 3
L,−T 3

R〉, a subgroup of the custodial SU(2)V . We will denote this

symmetry by PC . Its action on 2-component spinors is given by PC = iσ1, while SO(3) vectors

transform with PC = Diag(1,−1,−1). According to our rule then, the SM W 3
L can be assigned an

odd parity under PC : W 3
L → −W 3

L. For ψ to be an eigenstate of this symmetry, it must have

T 3
L = T 3

R = 0 . (6)

If this is the case, we have that δQ3
L = 0 at any order. Indeed, if ψ is an eigenstate of PC , then

ψ̄γµψ is even under PC and it cannot couple to W 3
L that is odd. Thus, the coupling of the Z to

SM fermions that fulfill Eq. (6) is protected by the subgroup PC of the custodial symmetry.

It is important to notice that the symmetries discussed above can only protect the coupling

of the Z to fermions at zero momentum. However, momentum dependent corrections to Zψψ̄ are

parametrically suppressed in strongly coupled BSM sectors. For example, in the case of ZbLb̄L a

naive estimate gives δg/g ∼ (λt/gBSM )2 ξ−2
R (q2/Λ2

BSM ), where λt ∼ gBSM ξLξR is the top Yukawa

coupling, ξL (ξR) is the degree of mixing between tL (tR) and BSM states (0 ≤ ξL,R ≤ 1), and gBSM

is the coupling among the BSM particles. Therefore, δg/g can be sufficiently small for gBSM ' λt

(and ξR not too small).

3 Corrections to ZbLb̄L in custodial invariant models

The symmetry argument given in the previous section shows how to build Higgsless or composite

Higgs models in which Zbb̄ does not receive corrections from the BSM sector. Let us start with the

ZbLb̄L coupling. In these models it has been commonly assumed that bL transforms as a (2,1)1/6

representation of the SU(2)L⊗SU(2)R⊗U(1)X group. In that case, bL has the quantum numbers

TL = 1/2, TR = 0, T 3
L = −1/2 and T 3

R = 0, which fulfill neither the condition (3) nor (6). As a

consequence, ZbLb̄L is not protected by the custodial symmetry. Condition (3), however, suggests

us a better assignment for the bL quantum numbers:

TL = 1/2 = TR , and T 3
L = −1/2 = T 3

R . (7)
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is same as the SU(4)c one).

Note that, due to Pati-Salam being only partial unification of SM gauge groups, the SU(2)R

and SU(4)c gauge couplings are unrelated so that sin
2 θ�

is a free parameter. However, it was shown

in reference [35] that a SO(10)-type completion of Pati-Salam, i.e., full unification of SM gauge

groups, is very well-motivated due to the SUSY-level precision of the gauge coupling unification.

With this result in mind, we can set g4 = gR to find sin
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Couplings for model with/without leptonic channel

Coupling Value (in units of gLR

√
kπR) Comments

ν �
R
γµZ � µν �

R
−aν�R

cos
−1 θ� aν�R

∼ 1

ν̂ �
R
γµZ � µν̂ �

R
−a

ν̂�R
cos

−1 θ� a
ν̂�R
∼

�
mν�
MKK

�2

tRγµZ � µtR −2
3atR cos

−1 θ� sin2 θ� atR

<∼ 1

(t, b)LγµZ � µ
(t, b)L a(t,b)L

cos
−1 θ�

�
−1

2 −
1
6 sin

2 θ�
�

a(t,b)L

<∼ 1

such that
√atR a(t,b)L

∼ 1
YKK

∼ 1
7

(ν, τ)LγµZ � µ
(ν, τ)L a(ν,τ)L

cos
−1 θ�

�
1
2 +

1
2 sin

2 θ�
�

a(ν,τ)L

<∼ 1
10

τRγµZ � µτR aτR cos
−1 θ� sin2 θ� aτR

<∼ 1

µRγµZ � µµR aµR cos
−1 θ� sin2 θ� aµR

<∼ 1

bRγµZ � µbR abR cos
−1 θ�

�
−1 +

1
3 sin

2 θ�
�

abR

<∼ 1
10

Zlong.Z �
µh aZ�H

cos θ�

2

�
pµ

Zlong.
− pµ

h

�
aZ�H ∼ 1

W+
long.

Z �
µW−

long.
aZ�H

cos θ�

2

�
pµ

W
+
long.

− pµ

W
−
long.

�
aZ�H ∼ 1

ν �
R
ν̂ �

R
φ (radion)

mν�
R

Λr
(no gLR

√
kπR) Λr ≡

√
6MPl.e−kπR

Table 5: Couplings relevant for DM annihilation in custodial, partial unification, case (see Tab. 2):

value of sin
2 θ� is 6/7 and note that T ν�

3R
= 1.

Coupling Comments

ν �
R
γµXµ

s tR
√

kπR g4√
2
atRν�R

atRν�R
∼ √atR

ν �
R
ν̂ �

R
φ

mν�
R

Λr
same as in Tab. 5

Table 6: Couplings relevant for DM annihilation in full unifiable custodial case (see Tab. 3): value

of sin
2 θ� is 3/5, but largely irrelevant for cosmology since T ν�

3R
= 0.

• Neglecting TeV brane-localized kinetic terms for gauge fields, the couplings can be coveniently

expressed (as in middle column) in units of g4D

√
kπR ≡ g5D

√
k, where g5D is the 5D gauge

coupling (of mass dimension −1/2) such that g4D is the coupling of the (“would-be” in some

cases) zero-mode (and hence is volume suppressed compared to g5D).

• The custodial symmetry for Z couplings to fermions requires the two SU(2) 5D couplings to

be equal, but the SU(4)C coupling is unrelated to it. Hence, there appear two g4D’s in the

table: gLR for the two SU(2) groups and g4 for SU(4) group.

• g4D’s cannot always be equated to the SM gauge couplings since the relation between the two

couplings depends on presence of tree-level UV brane kinetic terms and also loop corrections.

A detailed analysis is left for future work, but here we can choose each of the g4D’s to
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= 0.

• Neglecting TeV brane-localized kinetic terms for gauge fields, the couplings can be coveniently

expressed (as in middle column) in units of g4D

√
kπR ≡ g5D

√
k, where g5D is the 5D gauge

coupling (of mass dimension −1/2) such that g4D is the coupling of the (“would-be” in some

cases) zero-mode (and hence is volume suppressed compared to g5D).

• The custodial symmetry for Z couplings to fermions requires the two SU(2) 5D couplings to

be equal, but the SU(4)C coupling is unrelated to it. Hence, there appear two g4D’s in the

table: gLR for the two SU(2) groups and g4 for SU(4) group.

• g4D’s cannot always be equated to the SM gauge couplings since the relation between the two

couplings depends on presence of tree-level UV brane kinetic terms and also loop corrections.
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A model with vanishing DM Z‘: no 
leptonic BR for DM annihilation

A model with 
Non-vanishing 

DM Z‘        
=>large 

leptonic BR for 
DM annihilation

29Tuesday, June 1, 2010



Indirect detection: signature in GCRs

• CR injection rate density

Particle Physics input: Energy dependent 
BR into stable final state α 
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