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Introduction

I Motivation:
Search for models with EWSB due to the monopole
condensation (discussed by C. Csaki on Monday)

I Do theories with chiral monopoles/dyons exist?
I Examples with SUSY theories with massless fermionic

monopoles: Argyres-Douglas (see also Intriligator-Seiberg).
I No known theories with chiral monopoles.

I Bottom-up approach: are there new consistency conditions
on such models?

I Dirac quantization conditions
I New anomaly constraints:

I Tools: SL(2, Z) and Zwanziger’s Lagrangian



SL(2, Z) transformations
I A set of field redefinitions that leaves physics unchanged
I This is not a symmetry, does not leave Lagrangian invariant
I S-duality:

I Exchanges magnetic and electric charges: (q, g)→ (−g, q)
I Changes the coupling e→ 1/e

I T-duality:
I Shifts electric charge: (q, g)→ (q + g, g)
I In a theory with θ-parameter:

θ → θ + 2π
(q, g)→ (q + g, g)

Witten charge qeff = q + g θ
2π

I Together form an SL(2, Z) group.
For “holomorphic” coupling τ = θ

2π + 4πi
e2

:

τ → aτ+b
cτ+d

ad− bc = 1



SL(2, Z) transformations

I There is a basis where a dyon carries only electric charges(
a b
c d

)(
q
g

)
=
(
n
0

)
n = gcd(q, g)

I Assume that anomaly contributions of each field can be
calculated independently.

I For each field calculate in the basis where it is an electron

∂µj
µ
A =

n2

16π2
F ′∗F ′

I Transform back to original basis
I Need to find SL(2, Z) transformations of the fields and

currents



Axial anomaly

I Electric Jµ and magnetic Kµ currents transform

Kµ → aK ′µ + cJ ′µ, Jµ → bK ′µ + dJ ′µ

I Field strength

(Fµν + i∗Fµν)→ 1
cτ∗ + d

(F ′µν + i∗F ′µν)

(From Maxwell equations Imτ
4π
∂µ(Fµν + i∗F ′µν) = Jµ + τKµ)



Axial anomaly

I Axial anomaly

∂µj
µ
A = n2

16π2F
′∗F ′ = n2

16π2 Im(F ′ + i∗F ′)2

= 1
16π2

{[(
q + θ

2πg
)2 − g2 16π2

e4

]
F ∗F +

[ (
q + θ

2πg
)
g
]
F 2
}

I Related to β-function — possibility of the conformal fixed
point

I CP-invariant theory:
∑

i gi(qi + θ
2π ) = 0

I No CP invariance: can rotate F 2 away but F ∗F is not a
total derivative and can serve as a kinetic term.

I Rotating θ away gives∑
i

qAiq
2
i = 0

∑
i

qAiqigi = 0
∑
i

qAig
2
i = 0



Zwanziger Lagrangian

I To calculate gauge anomalies need to know
transformations of gauge fields under SL(2, Z).

I Zwanziger introduced local but non-Lorentz invariant
Lagrangian with two gauge potentials Aµ and Bµ.

I Zwanziger Lagrangian generalized to include θ:

L = −Im τ
8πn2 {[n · ∂ ∧ (A+ iB)] · [n · ∂ ∧ (A− iB)]}

−Re τ
8πn2 {[n · ∂ ∧ (A+ iB)] · [n ·∗ ∂ ∧ (A− iB)]}

−J ·A− 4π
e2
K ·B.

I Aµ has a local coupling to electric current
I Bµ has a local coupling to magnetic current.
I Only two on-shell degrees of freedom.



Gauge anomalies

I SL(2, Z) covariance of Zwanziger lagrangian implies that
gauge potentials transform:

A+ iB → 1
cτ∗ + d

(A′ + iB′)

I Mixed anomalies in a theory with SU(N)× U(1)
I Gravitational anomaly
I Mixed anomalies in a presence of additional U(1)X
I Cubic anomaly



Gauge anomalies in SU(N)× U(1)

I Anomalous transformation of the Lagrangian

Lanom = cΩG∗G
Ω = ΩA + iΩB

I ΩA and ΩB are gauge transformation parameters
I Ω transforms the same way as gauge potentials
I After SL(2, Z) transformation

cΩ′ =
nT (r)
16Π2

Ω′ −→
(
q +

θ

2π
g

)
ΩA + g

2π
e2

ΩB



Gauge anomalies

I SU(N)2U(1)m anomaly:
∑

i T (ri)gi = 0
I Gravitational anomaly:

∑
gi = 0

I Mixed anomalies with U(1)X give several new conditions:∑
i

qXig
2
i = 0

∑
i

qXiqigi = 0
∑
i

q2Xigi = 0

I Cubic anomaly

Lanom =
n3

16π2
Ω′AF

′∗F ′

I New conditions∑
i

q2i gi = 0,
∑

qig
2
i = 0

∑
i

g3
i = 0



Conclusions

I Bottom-up approach allows to impose some consistency
constraints on theories with chiral monopoles and dyons

I There are 8 new anomaly conditions
I These constraints can be applied to building EWSB

models (discussed by Csaba Csaki’s on Monday)


