Higgs and co.

Alex Pomarol (Univ. Autonoma Barcelona)

based on work done with J.Mrazek, R.Rattazzi, M.Redi, J.Serra and A.Wulzer, in preparation...
(also Gripaios, AP, Riva, Serra arXiv:0902.1483)

First LHC Mission:

> Who is the moderator of $\mathrm{W}_{\mathrm{L}} \mathrm{W}$-scattering amplitudes?

First LHC Mission:

> Who is the moderator of $\mathrm{W}_{\mathrm{L}} \mathrm{W}_{\mathrm{L}}$ scattering amplitudes?

Possibility of a single moderator $=$ Higgs

First LHC Mission:

> Who is the moderator of $W_{\mathrm{L}} \mathrm{W}_{\mathrm{L}}$-scattering amplitudes?

Possibility of a single moderator $=$ Higgs
i.e. SM

But naturalness against this simple option... then expected

First LHC Mission:

Who is the moderator of $W_{\mathrm{L}} \mathrm{W}_{\mathrm{L}}$-scattering amplitudes?

Possibility of a single moderator $=$ Higgs
i.e. SM

But naturalness against this simple option... then expected
Susy option
MSSM: Extra weakly coupled scalars:
h, H, A, H^{+}

First LHC Mission:

Who is the moderator of $W_{\mathrm{L}} \mathrm{W}_{\mathrm{L}}$-scattering amplitudes?

Possibility of a single moderator $=$ Higgs i.e. SM
But naturalness against this simple option... then expected

MSSM: Extra weakly coupled scalars: h, $\mathrm{H}, \mathrm{A}, \mathrm{H}^{+}$

Composite Higgs: Strongly-Interacting Scalars

Not fully unitarizing

Not true Higgses

Susy Option: Higgs sector of the MSSM and variations (NMSSM, CMSSM, nuMSSM, λ-MSSM, S-MSSM, ...)
\Rightarrow Fully explored
Composite Option: Higgs sector not yet fully explored:

$$
\text { In the "Higgs Hunter’s Guide" only one page out of } 400
$$

\Rightarrow Purpose of this talk

Outline

I) Higgs content and properties in composite scenarios
2) Pheno constraints:

- EWPT
- FCNC

3) Collider implications

Composite Wigs idea

Higgs arising as Pseudo-Goldstone Bosons (PGB) from the breaking of global symmetry of a strong sector (o rWED):

$$
\mathrm{G} \rightarrow \mathrm{H}
$$

Higgs (h) and company $=\mathrm{PGB}=\operatorname{coset} \mathrm{G} / \mathrm{H}$
From the strong sector (or WED): $\quad V(h)=0 \quad(h \rightarrow h+\alpha)$
Explicit breaking from SM fields: $\quad \mathrm{V}(\mathrm{h} / \mathrm{f}) \neq 0 \quad$ at the loop level
$\Leftrightarrow\langle\mathrm{h}\rangle \sim \mathrm{f}$ (PGB-decay constant)
As we will see, $\mathrm{f} \sim 500 \mathrm{GeV} \rightarrow$ Wigs masses $100-300 \mathrm{GeV}$
This is not the little-Higgs approach!

Requirements for the group \mathbf{G} and H :

a) H must contain the SM gauge group
b) G must contain an $\mathrm{SU}(2) \times \mathrm{SU}(2) \sim \mathrm{SO}(4)$ symmetry under which a PGB is a Higgs doublet is a $(2,2) \sim 4$
P.Sikivie, L.Susskind, M.B.Voloshin, V.I.Zakharov

$$
\left.H=\left(\begin{array}{l}
0 \\
0 \\
0 \\
v
\end{array}\right)\right\} \mathrm{SO}(3) \text { unbroken subgroup: "Custodial" symmetry } \begin{array}{r}
\text { guarantees } \rho \text {-parameter } \sim 1.00 \ldots
\end{array}
$$

Requirements for the group G and H:

a) H must contain the SM gauge group
b) G must contain an $\mathrm{SU}(2) \times \mathrm{SU}(2) \sim \mathrm{SO}(4)$ symmetry under which a PGB is a Higgs doublet is a $(2,2) \sim 4$
P.Sikivie, L.Susskind, M.B.Voloshin, V.I.Zakharov

$$
\left.H=\left(\begin{array}{l}
0 \\
0 \\
0 \\
v
\end{array}\right)\right\} \mathrm{SO}(3) \text { unbroken subgroup: "Custodial" symmetry } \quad \text { guarantees } \rho \text {-parameter } \sim 1.00 \ldots
$$

We could know more on G and H if we know the elementary states of the strong sector
e.g. For a strong $\mathrm{SU}(\mathrm{N})$ sector:

Minimal fund. fermion content: $4\left(\Psi_{\llcorner }, \Psi_{R}\right)$ then $G=S U(4) \times S U(4) \rightarrow H=S U(4)$
But we are not yet able to know a strong sector that successfully explains all EWSB masses
\rightarrow We must a take a more modest approach and explore the different possibilities fulfilling (a) and (b)

Possible symmetry patterns:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(1,1)$
	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(1,1)+(1,1)$
	G_{2}	$7=(1,3)+(2,2)$
\ldots	\ldots	\ldots

times $S U(3) c \times U(I)$ of $S M$

Possible symmetry patterns:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(1,1)$
	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	$8=(2,2)+(2,2)$
one doublet		
	$\mathrm{SO}(6)$	$6=(2,2)+(1,1)+(1,1)$
	G_{2}	$7=(1,3)+(2,2)$
\ldots	\ldots	\ldots

times $S U(3) \mathrm{c} \times \mathrm{U}(\mathrm{I})$ of SM

Possible symmetry patterns:

G	H	PGB		
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$		
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(1,1)$		
	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	$8=(2,2)+(2,2)$		One doublet
:---:				
+ Singlet				

times $S U(3) c \times U(I)$ of $S M$

Possible symmetry patterns:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(\mathrm{I}, \mathrm{I})$
	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(1, \mathrm{I})+(\mathrm{I}, \mathrm{I})$
	G_{2}	$7=(1,3)+(2,2)$

times $S U(3) \mathrm{c} \times \mathrm{U}(\mathrm{I})$ of SM

Possible symmetry patterns:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(\mathrm{I}, \mathrm{I})$
	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(\mathrm{I}, \mathrm{I})+(\mathrm{I}, \mathrm{I})$
	G_{2}	$7=(\mathrm{I}, 3)+(2,2)$

times $S U(3) c \times U(I)$ of $S M$
Good: Scalar (PGB) spectrum fixed by symmetries Bad: Not clear which G/H should be considered
\Rightarrow Minimality is not a guide

Possible symmetry patterns:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(1,1)$
	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+\mathbf{1})+(1,1)$
	G_{2}	$7=(1,3)+(2)$
\ldots	\ldots	\ldots

Two doublets
times $S U(3) c \times U(I)$ of $S M$
be studied here!
Good: Scalar (PGB) spectrum fixed by symmetries Bad: Not clear which G/H should be considered
\Rightarrow Minimality is not a guide

Bosonic Part:

Although the dynamics of the strong sector can be unknown, the low-energy effective lagrangian for PGB Higgses can be determined by symmetries (as chiral lagrangian for pions physics).

Lowest dim operator:

$$
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}
$$

By expanding around the EWSB minimum, gives Higgs self-couplings and couplings to gauge bosons

SO(6)/SO(5) model: Doublet h + Singlet η

$$
\begin{aligned}
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}= & \frac{f^{2}}{2}\left(\partial_{\mu} h\right)^{2}+\frac{f^{2}}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{f^{2}}{2} \frac{\left(h \partial_{\mu} h+\eta \partial_{\mu} \eta\right)^{2}}{1-h^{2}-\eta^{2}} \\
& +\frac{g^{2} f^{2}}{4} h^{2}\left[W^{\mu+} W_{\mu}^{-}+\frac{1}{2 \cos ^{2} \theta_{W}} Z^{\mu} Z_{\mu}\right]
\end{aligned}
$$

SO(6)/SO(5) model: Doublet h + Singlet η

$$
\begin{aligned}
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}= & \frac{f^{2}}{2}\left(\partial_{\mu} h\right)^{2}+\frac{f^{2}}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{f^{2}}{2} \frac{\left(h \partial_{\mu} h+\eta \partial_{\mu} \eta\right)^{2}}{1-h^{2}-\eta^{2}} \\
& +\frac{g^{2} f^{2}}{4} h^{2}\left[W^{\mu+} W_{\mu}^{-}+\frac{1}{2} \cos ^{2} \theta_{W} Z^{\mu} Z_{\mu}\right]
\end{aligned}
$$

$h \eta \eta$ coupling:

$$
-\frac{f^{2}\langle h\rangle}{2} \eta^{2} \partial_{\mu}^{2} h
$$

can induce the decay $h \rightarrow \eta \eta$
Fixed by symmetries !!

SO(6)/[SO(4)xSO(2)] model: 2 Doublets: $\mathrm{H}_{1,2}$

(spectrum: $\mathrm{h}, \mathrm{H}, \mathrm{A}, \mathrm{H}^{+}$)

$$
\begin{array}{r}
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}=\cdots-\frac{g^{2}}{24}\left[\left|W_{\mu}\right|^{2}+\frac{Z_{\mu}^{2}}{2 \cos ^{2} \theta_{W}}\right]\left[\left(h^{2}+H^{2}\right)^{2}+A^{4}\right]-\frac{g^{2} Z_{\mu}^{2}}{8 \cos ^{2} \theta_{W}} h^{2} A^{2} \\
-\frac{g Z^{\mu}}{6 \cos \theta_{W}} h^{2} H \partial_{\mu} A+\cdots
\end{array}
$$

SO(6)/[SO(4)xSO(2)] model: 2 Doublets: $\mathrm{H}_{1,2}$

(spectrum: $\mathrm{h}, \mathrm{H}, \mathrm{A}, \mathrm{H}^{+}$)

$$
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}=\cdots-\frac{g^{2}}{24}\left[\left|W_{\mu}\right|^{2}+\frac{Z_{\mu}^{2}}{2 \cos ^{2} \theta_{W}}\right]\left[\left(h^{2}+H^{2}\right)^{2}+A^{4}\right]-\frac{g^{2} Z_{\mu}^{2}}{8 \cos ^{2} \theta_{W}} h^{2} A^{2}
$$

Changes in the Higgs-coupling sum rules

In renormalizable THDM:

$h_{i}--\sum_{2^{2}}^{2} W$

$$
\sum_{i} g_{h_{i} W W}^{2}=g^{2} m_{W}^{2}
$$

$$
\begin{array}{ccc}
h_{i} & \ddots & \\
& \ddots & \\
& & \\
& & A
\end{array}
$$

$$
\sum_{i} g_{h_{i} A Z}^{2}=\frac{g}{\cos \theta_{W}}
$$

Changes in the Higgs-coupling sum rules

 In PGB Higgs:

$$
\sum_{i} g_{h_{i} W W}^{2}=g^{2} m_{W}^{2}\left(1-\frac{2}{3} \frac{v^{2}}{f^{2}}\right)
$$

$$
\begin{array}{ccc}
h_{i} & & \\
& \ddots & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}
$$

$$
\sum_{i} g_{h_{i} A Z}^{2}=\frac{g}{\cos \theta_{W}}\left(1-\frac{1}{6} \frac{v^{2}}{f^{2}}\right)
$$

Possible 20\% corrections!

Electroweak Precision Tests

Facing the S and T parameters bounds:

For a single composite Higgs:

$\Rightarrow f>500 \mathrm{GeV}$

Facing the S and T parameters bounds:

If more than a doublet (or triplet), custodial symmetry must be kept after EWSB:

$$
\left.H_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
v_{1}
\end{array}\right)\right\} \underset{\substack{\text { subgroup }}}{\substack{\text { sO(3) unbroken }}}\left\{\left(\begin{array}{c}
0 \\
0 \\
0 \\
v_{2}
\end{array}\right)=H_{2}\right.
$$

Facing the S and T parameters bounds:

If more than a doublet (or triplet), custodial symmetry must be kept after EWSB:

$$
\left.H_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
v_{1}
\end{array}\right)\right\}_{\substack{\text { subgroup }}}^{\substack{\text { so } \\
\text { untroken }}}\left\{\left(\begin{array}{c}
0 \\
0 \\
0 \\
v_{2}
\end{array}\right)=H_{2}\right.
$$

PA: $\quad \mathrm{H}_{1} \rightarrow \mathrm{H}_{1}, \mathrm{H}_{2} \rightarrow-\mathrm{H}_{2}$
Symmetries of the cosets!

FCNC

SM Fermion couplings to PGBs (Strong sector or WED):
Defined by choosing the SM fermion embedding in reps of G :

$$
\left.\begin{array}{r}
q_{L} \in Q \\
u_{R} \in U
\end{array}\right\} \text { reps of } \mathrm{G}
$$

and write G-invariant mass terms:

$$
\lambda_{i j} \bar{Q}_{i} \Sigma\left(h_{a}\right) U_{j}
$$

\rightarrow see example...

EXAMPLE:

$$
\mathrm{G}=\mathrm{SO}(6) \rightarrow \mathrm{H}=\mathrm{SO}(4) \times \mathrm{SO}(2)
$$

$$
\Sigma=\operatorname{coset} \mathrm{SO}(6) / \mathrm{SO}(4) \times \mathrm{SO}(2) \in 20
$$

Fermions, for example, in the 6 of $\mathrm{SO}(6)$:

$$
\left.\boldsymbol{6}=\left(\begin{array}{l}
. \\
. \\
\cdot \\
\cdot \\
\cdot
\end{array}\right\} \quad \begin{array}{c}
\\
.
\end{array}\right\} \text { two } S U(2)\llcorner\text { doublet }
$$

allows for the embedding:

$$
q_{L} \in Q=\left(\begin{array}{c}
q_{L} \\
\vdots \\
.
\end{array}\right) \quad u_{R} \in U=\cos \theta_{u}
$$

$$
\left(\begin{array}{c}
\cdot \\
\dot{\cdot} \\
\dot{u_{R}}
\end{array}\right)+e^{i \alpha_{u}} \sin \theta_{u}\left(\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\vdots \\
u_{R}
\end{array}\right)
$$

EXAMPLE:

$$
\mathrm{G}=\mathrm{SO}(6) \rightarrow \mathrm{H}=\mathrm{SO}(4) \times \mathrm{SO}(2)
$$

$$
\Sigma=\operatorname{coset} \mathrm{SO}(6) / \mathrm{SO}(4) \times \mathrm{SO}(2) \in 20
$$

Fermions, for example, in the 6 of $\mathrm{SO}(6)$:

$$
\left.6=\left(\begin{array}{l}
\vdots \\
\vdots \\
\vdots
\end{array}\right)\right\} \begin{gathered}
\text { SU(2) } \text { doublet } \\
\text { two } S U(2) \text { s singlets }
\end{gathered}
$$

two parameters

 (per fermion)allows for the embedding:

$$
q_{L} \in Q=\left(\begin{array}{c}
q_{L} \\
. \\
.
\end{array}\right) \quad u_{R} \in U=\cos \theta_{u}
$$

$$
u\left(\begin{array}{c}
\cdot \\
\vdots \\
u_{R} \\
\cdot
\end{array}\right)+
$$

SM Fermion couplings to PGBs (Strong sector or WED):
Defined by choosing the SM fermion embedding in reps of G :

$$
\left.\begin{array}{r}
q_{L} \in Q \\
u_{R} \in U
\end{array}\right\} \text { reps of } \mathrm{G}
$$

and write G-invariant mass terms:

$$
\lambda_{i j} \bar{Q}_{i} \Sigma\left(h_{a}\right) U_{j}
$$

\rightarrow see example...
Expanding....

SM Fermion couplings to PGBs (Strong sector or WED):
Defined by choosing the SM fermion embedding in reps of G :

$$
\left.\begin{array}{r}
q_{L} \in Q \\
u_{R} \in U
\end{array}\right\} \text { reps of } \mathrm{G}
$$

and write G-invariant mass terms:

$$
\lambda_{i j} \bar{Q}_{i} \Sigma\left(h_{a}\right) U_{j}
$$

\rightarrow see example...
Expanding....

$$
=\lambda_{i j} \bar{q}_{L}^{i}\left(\cos \theta_{u_{j}} H_{1}+e^{i \alpha_{u_{j}}} \sin \theta_{u_{j}} H_{2}\right) u_{R}^{j}+\cdots
$$

SM Fermion couplings to PGBs (Strong sector or WED):
Defined by choosing the SM fermion embedding in reps of G :

$$
\left.\begin{array}{r}
q_{L} \in Q \\
u_{R} \in U
\end{array}\right\} \text { reps of } \mathrm{G}
$$

and write G-invariant mass terms:

$$
\lambda_{i j} \bar{Q}_{i} \Sigma\left(h_{a}\right) U_{j}
$$

\rightarrow see example...
Expanding....

$$
=\lambda_{i j} \bar{q}_{L}^{i}\left(\cos \theta_{u_{j}} H_{1}+e^{i \alpha_{u_{j}}} \sin \theta_{u_{j}} H_{2}\right) u_{R}^{j}+\cdots
$$

If only one operator Q $\Sigma \mathrm{U}$ possible, tree-level FCNC depends only on θ u

Flavor dependent case:

FCNC constraints:

(for simplicity $<h_{2}>=0$)

Main effect: ε_{κ}
(for $\bigcup_{R} \sim V_{c k M}$)

$$
\begin{array}{r}
s \\
\Rightarrow m_{h_{2}} \gtrsim 2 T e V
\end{array}
$$

Too large!
$\theta \mathrm{d} \sim \theta_{\mathrm{s}}$ needed

Assuming equal embedding for Ist and 2nd family \rightarrow 3rd family FCNC
Main contribution to ΔM_{B}

Saturates experimental bounds for Bd_{d} and Bs for:

$$
\begin{aligned}
& U_{\mathrm{R}} \sim V_{\mathrm{ckM}} \\
& \operatorname{Tan} \theta \mathrm{~b} \sim 3 \\
& \text { Higgs masses } \sim 200 \mathrm{GeV}
\end{aligned}
$$

\rightarrow expected impact in CP-violation: $\beta_{\mathrm{d}}, \beta_{\mathrm{s}}$ and $\mathrm{B} \rightarrow \mu \mu$

Flavor independent case

I) Only one operator QEU possible
2) Equal embedding for all families
parameters: $\theta_{\mathrm{u}}, \theta_{\mathrm{d}}, \theta_{\mathrm{e}}$ and $\alpha_{\mathrm{u}}, \alpha_{\mathrm{d}}, \alpha_{\mathrm{e}}$

" $" \rightarrow$ MFV with extra phases

Flavor transitions from loops of H^{+}:

$$
\mathbf{H}^{+} \mathbf{d}_{\iota} \mathbf{u}_{\mathrm{R}}: \quad M_{u} V_{\mathrm{CKM}} \times \frac{e^{i \alpha_{u}} \tan \theta_{u} \tan \beta-1}{\tan \beta+e^{i \alpha_{u}} \tan \theta_{u}}
$$

\Rightarrow Expected deviations from SM
in EDMs, $C P$-violation in $b \rightarrow s \gamma, B \rightarrow T U$

Contact with previous THDMs:

Type I:

Contact with previous THDMs:

Type I:

Type II:

Contact with previous THDMs:
Type I:

Type II:

Type X:

Contact with previous THDMs:

Type I:

Type II:

Type X:

Type Y:

Collider signatures

... mostly in progress

- Unraveling composite Higgs nature: precise measurements needed of Higgs Production Cross Sections x BR

Giudice, Grojean, AP, Rattazzi

- Extra scalars can make life easier or more difficult:

New decays available, e.g.,

Easiest signatures:

Charged Higgs:
a) Light $\mathrm{H}^{+}: \quad \mathrm{PP} \rightarrow \mathrm{tE}$

$$
\begin{aligned}
\mathrm{t} \rightarrow & \mathrm{H}^{+} \mathrm{b} \\
& \mathrm{H}^{+} \rightarrow \mathrm{TU}
\end{aligned}
$$

b) Heavy $\mathrm{H}^{+}: g b \rightarrow \mathrm{tH}^{-}$
I) $\mathrm{H}^{-} \rightarrow \mathrm{Zh}$
$h \rightarrow Z Z$
2) $\mathrm{H}^{-} \rightarrow \mathrm{WZ}$ if sizable

Conclusions

- If the hierarchy problem is solved by a strong dynamics (or WED), rich phenomenology of Pseudo-Goldstone Bosons expected
- Higgs spectrum and gauge-boson couplings fixed by G / H
- Rich FCNC phenomenology: Important B-physics impact
- It provides a (motivated) framework for multi-Higgs physics

