

Flavour Constraints on the Aligned Two-Higgs-Doublet Model

Antonio Pich IFIC, Univ. Valencia - CSIC

- A. Pich, P. Tuzón, Phys. Rev. D80 (2009) 091702
- M. Jung, A. Pich, P. Tuzón, arXiv:1006.xxxx [hep-ph]

Planck 2010, CERN, 31 May – 4 June 2010

Standard Model

One Higgs Doublet Φ : $\langle 0|\Phi|0\rangle = \begin{pmatrix} 0\\ \frac{v}{\sqrt{2}} \end{pmatrix}$, $\tilde{\Phi} \equiv i\tau_2 \Phi^*$

Diagonalization

GIM Mechanism (Unitarity)
Yukawas proportional to masses

No Flavour-Changing Neutral Currents

Two Higgs Doublets: ϕ_{a} (a = 1,2)

$$\langle 0|\phi_a^T(x)|0\rangle = \frac{1}{\sqrt{2}}(0, v_a e^{i\theta_a}) , \qquad \theta_1 = 0 , \qquad \theta \equiv \theta_2 - \theta_1$$

Higgs basis: $v \equiv \sqrt{v_1^2 + v_2^2}$, $\tan \beta \equiv v_2/v_1$

$$\begin{pmatrix} \Phi_{1} \\ -\Phi_{2} \end{pmatrix} \equiv \begin{bmatrix} \cos\beta & \sin\beta \\ \sin\beta & -\cos\beta \end{bmatrix} \begin{pmatrix} \phi_{1} \\ e^{-i\theta}\phi_{2} \end{pmatrix}$$
$$\longrightarrow \quad \Phi_{1} = \begin{bmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v + S_{1} + iG^{0}) \end{bmatrix} , \qquad \Phi_{2} = \begin{bmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (S_{2} + iS_{3}) \end{bmatrix}$$

Mass eigenstates: H^{\pm} , $\varphi_i^0(x) \equiv \{h(x), H(x), A(x)\} = \mathcal{R}_{ij} S_j(x)$

Yukawa Interactions in 2HDMs

$$\mathcal{L}_{Y} = -\bar{Q}'_{L} \left(\Gamma_{1}\phi_{1} + \Gamma_{2}\phi_{2} \right) d'_{R} - \bar{Q}'_{L} \left(\Delta_{1}\tilde{\phi}_{1} + \Delta_{2}\tilde{\phi}_{2} \right) u'_{R}$$

$$-\bar{L}'_{L} \left(\Pi_{1}\phi_{1} + \Pi_{2}\phi_{2} \right) l'_{R} + \text{h.c.}$$

$$\bigvee \text{SSB}$$

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} \left\{ \bar{Q}'_{L} \left(M'_{d}\Phi_{1} + Y'_{d}\Phi_{2} \right) d'_{R} + \bar{Q}'_{L} \left(M'_{u}\tilde{\Phi}_{1} + Y'_{u}\tilde{\Phi}_{2} \right) u'_{R} + \bar{L}'_{L} \left(M'_{l}\Phi_{1} + Y'_{l}\Phi_{2} \right) l'_{R} + \text{h.c.} \right\}$$

 $M'_{f} \text{ and } Y'_{f} \text{ unrelated} \longrightarrow \text{FCNCs}$ $\sqrt{2} M'_{d} = v_{1}\Gamma_{1} + v_{2}\Gamma_{2}e^{i\theta} , \quad \sqrt{2} M'_{u} = v_{1}\Delta_{1} + v_{2}\Delta_{2}e^{-i\theta}$ $\sqrt{2} Y'_{d} = v_{1}\Gamma_{2}e^{i\theta} - v_{2}\Gamma_{1} , \quad \sqrt{2} Y'_{u} = v_{1}\Delta_{2}e^{-i\theta} - v_{2}\Delta_{1}$

Avoiding FCNCs

- Very large scalar masses \implies THDM irrelevant at low energies
- Very small scalar couplings
- Type III model: $(Y_f)_{ij} \propto \sqrt{m_i m_j}$ Yukawa textures
 - (Cheng Sher '87)
- Discrete Z_2 symmetries: only one $\phi_a(x)$ couples to a given $f_R(x)$ (Glashow - Weinberg '77)

 $\mathcal{Z}_2: \quad \phi_1 \to \phi_1 \quad , \quad \phi_2 \to -\phi_2 \quad , \quad Q_L \to Q_L \quad , \quad L_L \to L_L \quad , \quad f_R \to \pm f_R$

CP conserved in the scalar sector

Aligned 2HDM

(Pich - Tuzón '09)

Require alignment in Flavour Space of Yukawa couplings:

$$\Gamma_{2} = \xi_{d} e^{-i\theta} \Gamma_{1} , \qquad \Delta_{2} = \xi_{u}^{*} e^{i\theta} \Delta_{1} , \qquad \Pi_{2} = \xi_{l} e^{-i\theta} \Pi_{1}$$

$$\bigvee$$

$$Y_{d,l} = \varsigma_{d,l} M_{d,l} , \qquad Y_{u} = \varsigma_{u}^{*} M_{u} , \qquad \varsigma_{f} \equiv \frac{\xi_{f} - \tan \beta}{1 + \xi_{f} \tan \beta}$$

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[\varsigma_{d} V_{_{\mathrm{CKM}}} M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V_{_{\mathrm{CKM}}} \mathcal{P}_{L} \right] d + \varsigma_{l} \left(\bar{\nu} M_{l} \mathcal{P}_{R} l \right) \right\}$$

$$-\frac{1}{v} \sum_{\varphi_{i}^{0}, f} y_{f}^{\varphi_{i}^{0}} \varphi_{i}^{0} \left(\bar{f} M_{f} \mathcal{P}_{R} f \right) + \text{h.c.}$$

- Fermionic couplings proportional to fermion masses.
- Neutral Yukawas are diagonal in flavour

 $y_{d,l}^{\varphi_i^0} = \mathcal{R}_{i1} + (\mathcal{R}_{i2} + i \,\mathcal{R}_{i3}) \,\varsigma_{d,l} \qquad , \qquad y_u^{\varphi_i^0} = \mathcal{R}_{i1} + (\mathcal{R}_{i2} - i \,\mathcal{R}_{i3}) \,\varsigma_u^*$

- $V_{\rm CKM}$ is the only source of flavour-changing phenomena
- All leptonic couplings are diagonal in flavour
- Only three new (universal) couplings ς_f .
- The usual \mathcal{Z}_2 models are recovered in the limits $\xi_f o 0, \infty$

The *inert* doublet model corresponds to $\varsigma_f = 0$ ($\xi_f = \tan \beta$)

• Sf are arbitrary complex numbers

New sources of CP violation without tree-level FCNCs

A2HDM: General phenomenological setting without tree-level FCNCs

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[\varsigma_{d} V_{_{\mathrm{CKM}}} M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V_{_{\mathrm{CKM}}} \mathcal{P}_{L} \right] d + \varsigma_{I} \left(\bar{\nu} M_{I} \mathcal{P}_{R} I \right) \right\}$$

$$-\frac{1}{v} \sum_{\varphi_{i}^{0}, f} y_{f}^{\varphi_{i}^{0}} \varphi_{i}^{0} \left(\bar{f} M_{f} \mathcal{P}_{R} f \right) + \text{h.c.}$$

 \mathcal{Z}_2 models:

Model	Sd	ςu	51
Type I	$\cot eta$	$\cot\beta$	$\cot\beta$
Type II	$-\taneta$	$\cot\beta$	$-\tan\beta$
Type X	$\cot eta$	$\cot\beta$	$-\tan\beta$
Type Y	$-\tan\beta$	$\cot\beta$	$\cot\beta$
Inert	0	0	0

Quantum Corrections

- Leptonic FCNCs absent to all orders in perturbation theory
- Loop-induced FCNCs local terms take the form:

$$\begin{split} \bar{u}_L V_{\rm CKM} (M_d M_d^{\dagger})^n V_{\rm CKM}^{\dagger} (M_u M_u^{\dagger})^m M_u u_R \\ \bar{d}_L V_{\rm CKM}^{\dagger} (M_u M_u^{\dagger})^n V_{\rm CKM} (M_d M_d^{\dagger})^m M_d d_R \end{split}$$

(D'Ambrosio et al, Chivukula-Georgi, Hall-Randall, Buras et al, Cirigliano et al)

FCNCs at one Loop

- \bullet Vanish in all \mathcal{Z}_2 models as it should
- Suppressed by $m_q m_{q'}^2/(4\pi^2 v^3)$ and $V_{_{
 m CKM}}^{qq'}$

🗾 $\overline{s}_{l} b_{R}$, $\overline{c}_{l} t_{R}$

Phenomenological Constraints

Jung-Pich-Tuzón

$$|g_{\mu}/g_{e}|^{2} = 1.0036 \pm 0.0029$$

• $\tau \rightarrow \mu/e$:

$$|\varsigma_l|/M_{H^\pm} < 0.43~{
m GeV^{-1}}$$
 (95% CL)

•
$$\Gamma(P^- \to l^- \bar{\nu}_l) = \frac{m_P}{8\pi} \left(1 - \frac{m_l^2}{m_P^2}\right)^2 |G_F m_l f_P V_{\text{CKM}}^{ij}|^2 |1 - \Delta_{ij}|^2$$

 $\Delta_{ij} = \frac{m_P^2}{M_{H^{\pm}}^2} \varsigma_l^* \frac{\varsigma_u m_{u_i} + \varsigma_d m_{d_j}}{m_{u_i} + m_{d_j}}$

• $\Gamma(P \to P' l^- \bar{\nu}_l)$ \implies Scalar form factor: $\tilde{f}_0(t) = f_0(t) (1 + \delta_{ij} t)$

$$\delta_{ij} \equiv -\frac{\varsigma_i^*}{M_{H^{\pm}}^2} \frac{m_i \varsigma_u - m_j \varsigma_d}{m_i - m_j}$$

A. Pich – Planck 2010

Global fit to $P \rightarrow I\nu_I$, $\tau \rightarrow P\nu_{\tau}$, $P \rightarrow P'I\nu_I$ (95% CL)

Jung-Pich-Tuzón

 $(GeV^{-2} units)$

A. Pich – Planck 2010

Constraints from $Z \rightarrow b\bar{b}$ and ΔM_{B_s} (95% CL) Jung-Pich-Tuzón

 $|\varsigma_u|/M_{H^{\pm}} < 0.010 \text{ GeV}^{-1}$ \implies $|\varsigma_u\varsigma_l^*|/M_{H^{\pm}}^2 < 0.0041 \text{ GeV}^{-2}$

A. Pich – Planck 2010

Constraints from ϵ_K (95% CL) Jung-Pich-Tuzón

A. Pich – Planck 2010

Constraints from $b \rightarrow s\gamma$ (95% CL)

Jung-Pich-Tuzón

 $C_i^{\text{eff}}(\mu_W) = C_{i,SM} + |\varsigma_u|^2 \ C_{i,uu} - (\varsigma_u^*\varsigma_d \) \ C_{i,ud}$

A. Pich – Planck 2010

Global Constraints on Z_2 Models (95% CL) Jung-Pich-Tuzón

Global Constraints on Z_2 Models (95% CL) Jung-Pich-Tuzón

D0: $\mu^{\pm}\mu^{\pm}$ **Asymmetry**

B^0 Mixing

New CDF measurement of *B*

Caveat

$$a_{sl}^{q} \equiv \frac{\Gamma(\bar{B}_{q}^{0} \to \mu^{+}X) - \Gamma(B_{q}^{0} \to \mu^{-}X)}{\Gamma(\bar{B}_{q}^{0} \to \mu^{+}X) + \Gamma(B_{q}^{0} \to \mu^{-}X)} = \frac{\Delta\Gamma_{q}}{\Delta M_{q}} \tan\phi_{q}$$
$$A_{sl}^{b}|_{D0} + a_{sl}^{d}|_{HFAG} \implies a_{sl}^{s} = -0.0146 \pm 0.0075$$
$$a_{sl}^{s} + \Delta M_{s}^{\exp} + \Delta\Gamma_{s}^{SM} \implies \sin\phi_{s} = -2.7 \pm 1.4 \pm 1.6$$

Measured D0 central value incompatible with $\Delta\Gamma_s = \Delta\Gamma_s^{SM}$

SM:
$$\phi_s = 0.24^\circ \pm 0.08^\circ$$
 , $\phi_d = -5.2^\circ {+1.5^\circ}_{-2.1^\circ}$ (Lenz-Nierste)

A. Pich - Planck 2010

$B_s^0 - \bar{B}_s^0$ Mixing Phase within the A2HDM

Jung-Pich-Tuzón

A. Pich – Planck 2010

SUMMARY

- The Aligned THDM provides a general phenomenological setting Includes all \mathcal{Z}_2 models
- Tree-level FCNCs absent by construction
- Leptonic FCNCs forbidden to all orders
- Loop-induced quark FCNCs very constrained (MFV like)
- New sources of CP violation through ς_f
- Could accommodate a large B_s^0 mixing phase ϕ_s
- Many questions: dipole moments, one-loop FCNC phenomena ...

Backup Slides

$$\Phi_1 = \begin{bmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + S_1 + iG^0 \right) \end{bmatrix} , \qquad \Phi_2 = \begin{bmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(S_2 + iS_3 \right) \end{bmatrix}$$

Goldstones: G^{\pm}, G^{0}

Mass eigenstates: H^{\pm} , $\varphi_i^0(x) = \{h(x), H(x), A(x)\}$

$$\varphi_i^0(x) = \{h(x), H(x), A(x)\} = \mathcal{R}_{ij} S_j(x)$$

CP-conserving scalar potential: $A(x) = S_3(x)$ $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{bmatrix} \cos(\alpha - \beta) & \sin(\alpha - \beta) \\ -\sin(\alpha - \beta) & \cos(\alpha - \beta) \end{bmatrix} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}$

Constraints from $B \rightarrow D \tau \nu_{\tau}$ (95% CL)

Units of $M_{H^{\pm}}^{-2}$. Colours indicate 1 - CL. $D \to \mu\nu$ and $B \to \tau\nu$ used to constrain the combination not shown. The red lines show the constraint for $\varsigma_l^* \varsigma_{u,d} / M_H^2 \to 0$.

Jung-Pich-Tuzón

Parameter	Value	Comment
f_{B_s}	$(0.242\pm 0.003\pm 0.022)~{ m GeV}$	
f_{B_s}/f_{B_d}	$1.232\pm 0.016\pm 0.033$	
f_{D_s}	$(0.2417 \pm 0.0012 \pm 0.0053) \text{ GeV}$	
f_{D_s}/f_{D_d}	$1.171 \pm 0.005 \pm 0.02$	
f_K/f_π	$1.192\pm 0.002\pm 0.013$	
$f_{B_s}\sqrt{\hat{B}_{B_s^0}}$	$(0.266\pm 0.007\pm 0.032)~\text{GeV}$	
$f_{B_d}\sqrt{\hat{B}_{B_s^0}}/(f_{B_s}\sqrt{\hat{B}_{B_s^0}})$) $1.258 \pm 0.025 \pm 0.043$	
Âκ	$0.732 \pm 0.006 \pm 0.043$	
$ V_{ud} $	0.97425 ± 0.00022	
λ	0.2255 ± 0.0010	$\left(1 - V_{ud} ^2 ight)^{1/2}$
$ V_{ub} $	$(3.8\pm0.1\pm0.4)\cdot10^{-3}$	$b \rightarrow u l \nu$ (excl. + incl.)
A	$0.80 \pm 0.01 \pm 0.01$	b ightarrow c l u (excl. + incl.)
$\bar{ ho}$	$0.15 \pm 0.02 \pm 0.05$	Our fit
$ar\eta$	$0.38 \pm 0.01 \pm 0.06$	Our fit
$\rho^2 _{B\to DI\nu}$	$1.18 \pm 0.04 \pm 0.04$	
$\Delta _{B o DI u}$	0.46 ± 0.02	
$f_{+}^{K\pi}(0)$	0.965 ± 0.010	