MATHEMATICS OF THE UNIVERSE

Probing Variant Axion Models at LHC

1. June 2010 @CERN

Fuminobu Takahashi (IPMU, Univ. of Tokyo)

Chen, Frampton, FT, Yanagida, arXiv:1005.1185, to appear in JHEP.

<u>Strong CP problem:</u>

$$\mathcal{L}_{\theta} = \theta \frac{g_s^2}{32\pi^2} G^{\mu\nu} \tilde{G}_{\mu\nu}$$

Experimental bound (from neutron EDM) reads $|\theta| < 10^{-(9-10)} \equiv \theta^{(\exp)}$

Why is θ so small??

The Peccei-Quinn mechanism: Peccei and Quinn, `77

We introduce a global chiral $U(1)_{PQ}$ symmetry, which has a QCD anomaly.

$$\begin{split} \mathcal{L} &= \bar{q}_L q_R \Phi + \text{h.c.} \\ \mathbf{P}_{\mathbf{Q}} \text{ trans.:} \quad \begin{array}{l} q \to e^{i\alpha\gamma_5} q \\ \Phi \to e^{-2i\alpha} \Phi \end{array} \quad \begin{array}{l} \text{results in} \quad \Delta \mathcal{L} = 2\alpha \frac{g_s^2}{32\pi^2} G^{\mu\nu} \tilde{G}_{\mu\nu} \end{split}$$

If U(1)_{PQ} is spontaneously broken by $\langle\Phi
angle=f_a
eq 0$, there appears the associated NG boson, a, the axion.

$$\mathcal{L} = \left(\frac{a}{f_a} + \theta\right) \frac{g_s^2}{32\pi^2} G^{\mu\nu} \tilde{G}_{\mu\nu}$$

<u>Astrophysical/cosmological constraints</u>

invisible axion $f_a \gg v_{\rm EW} \quad \Longrightarrow \quad \text{Axion may play an important role in cosmology.}$ Star cooling/supernovae: $f_a \gtrsim 10^9 \, \text{GeV}$ Dark matter abundance: $f_a \lesssim 10^{12} \, \text{GeV}$ Moreover,

if U(1)_{PQ} is spontaneously broken during inflation:
 DM isocurvature fluc. w/ non-Gaussianity

if U(1)_{PQ} is restored during/after inflation:
 axionic strings/walls.
 Thi

This talk

If the $U(1)_{PQ}$ symmetry is restored during/ after inflation, the axionic strings and domain walls may be produced.

If the $U(1)_{PQ}$ symmetry is restored during/ after inflation, the axionic strings and domain walls may be produced.

Cosmic strings are formed at $T \approx f_a$

Allen, Shellard

Moreover, domain walls may be formed, if there are multiple degenerate vacua. Sikvie, 82

Moreover, domain walls may be formed, if there are multiple degenerate vacua.

Sikvie, 82

Solutions to the domain wall problem

Add explicit breaking of U(1)_{PQ}
 Low inflation/reheating
 N_{DW} = 1

Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion model has $N_{DW} = 3$.

(This is because there are three generations of quarks which carry PQ charges)

Kim-Shifman-Vainshtein-Zakharov axion model has $N_{DW} = 1$, if there is only one heavy quark with a PQ charge.

Variant axion models have $N_{DW} = 1$.

Variant Axion Models

[Peccei, Wu, Yanagida `86 Krauss, Wilczek `86]

Two Higgs doublets: $\Phi_1, \ \Phi_2$ (+ PQ singlet: σ)

In DFSZ model, Φ_1 is coupled to the down-type quarks and Φ_2 is to the up-type quarks. $\longrightarrow N_{\rm DW} = 3$

If we couple Φ_2 to only the t (or u or c) quark, we can avoid the domain wall problem!

<u>PQ charge assignment</u> [Model T]

	Φ_1	Φ_2	σ	t_R	others
PQ charge	0	-1	1	-1	0

$$V(\Phi_{1}, \Phi_{2}, \sigma) = \lambda_{1} \left(|\Phi_{1}|^{2} - \frac{v_{1}^{2}}{2} \right)^{2} + \lambda_{2} \left(|\Phi_{2}|^{2} - \frac{v_{2}^{2}}{2} \right)^{2} + \lambda \left(|\sigma|^{2} - \frac{v^{2}}{2} \right)^{2} + a |\Phi_{1}|^{2} |\sigma|^{2} + b |\Phi_{2}|^{2} |\sigma|^{2} + \left(m \Phi_{1}^{\dagger} \Phi_{2} \sigma + \text{h.c.} \right) + d |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + e |\Phi_{1}|^{2} |\Phi_{2}|^{2}.$$

Yukawa interactions

E

$$-\mathcal{L}_{ ext{Yukawa}}$$

$$y_{ij}^{(d)} \bar{Q}_{Li} \Phi_1 d_{Rj} + y_i^{(t)} \bar{Q}_{Li} \tilde{\Phi}_2 t_R + y_i^{(u)} \bar{Q}_{Li} \tilde{\Phi}_1 u_R + y_i^{(c)} \bar{Q}_{Li} \tilde{\Phi}_1 c_R$$

Light and heavy Higgs, h and H:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + h_1 + ig_1) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + h_2 + ig_2) \end{pmatrix}$$

 $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}, \quad \tan \beta = \frac{v_2}{v_1}$

1.Where is the light higgs?

 $\sin \alpha$ In extreme cases, h_1 or h_2

2. The couplings to gauge bosons?

<u>Couplings to gauge bosons:</u>

V = W or Z

➡ SM like

$\frac{\alpha \sim 0 \ \beta \sim \frac{\pi}{2}}{\text{Couplings to fermions: (Model T)}}$

HVV : $\cos(\beta - \alpha) g_{\rm SM}^{hVV}$,

 $hVV : \sin(\beta - \alpha) g_{\rm SM}^{hVV},$

$$\begin{aligned} hcc &: -\frac{\sin \alpha}{\cos \beta} g_{\rm SM}^{hcc}, \\ hbb &: -\frac{\sin \alpha}{\cos \beta} g_{\rm SM}^{hbb}, \\ htt &: -\frac{\cos \alpha}{\sin \beta} g_{\rm SM}^{htt}. \end{aligned}$$

Suppressed, if $|\sin \alpha| \ll \cot \beta$

⇒ SM like

The SM Higgs boson decay branching ratios

If h→bb (and h→gg) is suppressed, h→2 γ can be enhanced.

W⁺W⁻, ZZ

Production processes

Model T: gluon-gluon fusion (GGF)

+ the sub-dominant processes below.

Models U and C: Vector boson fusion (VBF)

Associated production (VH)

<u>Prospect for discovery of the light Higgs</u> <u>through the two-photon decay</u>

SM Higgs search at LHC:

Will be discovered through $h \rightarrow \gamma \gamma$ at ATLAS/ CMS with 30fb⁻¹ and 14TeV c.m. energy for M_h < 130GeV in the inclusive search.

Settimated significance for $h \rightarrow \gamma \gamma$ in VBF and VH is 2.2 sigma with 30fb⁻¹ at CMS.

In the case of VAM:

Model T
 ✓Enhanced by 4(3) at M_h = 120GeV for sin α = 0(-0.05)
 ✓Will be discovered with 3fb⁻¹(4fb⁻¹).

✓ Production c.s. will be reduced by a factor of (3-4) with 7TeV compared to 14TeV. The significance will be about 2 sigma with 1 fb⁻¹.

- Models U and C

 \checkmark Will be discovered only with 3fb⁻¹ (10fb⁻¹).

Conclusions

The PQ mechanism predicts the presence of a light particle, axion.

If the PQ symmetry is restored during/after inflation, domain walls may be produced. One way-out is the variant axion model.

The special Yukawa structure of the VAM may lead to the enhancement of $h \rightarrow 2\gamma$.

Back-up slides

