Recent CDF Results

Daniel Whiteson, UC Irvine

PLANCK 2010

On behalf of the CDF collaboration

Motivation

The Standard Model

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{adc}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}\bar{q}_j^{\sigma})g_{\mu}^{a} + \bar{G}^a\partial^2 G^a + g_sf^{abc}\partial_{\mu}\bar{G}^aG^bg_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu} H \partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} +$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^+_\mu)]$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ ${\textstyle\frac{1}{2}}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu}+g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu}-Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu})+$ $g^2 \tilde{s}^2_w (A_\mu W^+_\mu A_\nu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu) + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu] + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu] + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu] + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\nu - A_\mu A_\mu W^+_\nu W^-_\nu] + g^2 s_w c_w [A_\mu Z^0_\nu (W^+_\mu W^-_\mu W^-_\mu W^-_\nu] + g^2 s_w c_w [A_\mu Z^0_\nu W^-_\mu W^-_\nu] + g^2 s_w c_w [A_\mu Z^0_\nu W^-_\mu W^-_\mu W^-_\mu] + g^2 s_w c_w [A_\mu Z^0_\nu W^-_\mu W^-_\mu W^-_\mu] + g^2 s_w c_w [A_\mu Z^0_\nu W^-_\mu W^-_\mu W^-_\mu] + g^2 s_w c_w [A_\mu Z^0_\mu W^-_\mu] + g^2 s_w c_w [A_\mu Z^0_\mu] + g^2 s$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] \frac{1}{4}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})]^{*} + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]^{*}$ $\phi^+\partial_\mu H)] + \frac{1}{2}g \frac{1}{c_\mu}(Z^0_\mu (H\partial_\mu \phi^0 - \phi^0 \partial_\mu H) - ig \frac{s_\mu^2}{c_\mu}MZ^0_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - 0$ $\frac{1}{4}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s^2_u}{c_v}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$ $\begin{array}{l} W^{-}_{\mu}\phi^{+}) + \frac{1}{2} i g^{2} s_{w} - \phi^{-}_{\mu} W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2} \frac{z_{w}}{2} (2e_{w}^{2} - 1) Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - g^{1} s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{k}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}^{\lambda}_{\gamma}(\gamma\partial + m_{k}^{\lambda})u^{\lambda}_{\gamma} - g^{-}_{\mu}(\gamma\partial + m_{k}^{\lambda})u^{\lambda}_{\mu} - g^{-}_{\mu}(\gamma\partial + m_{k}^{$ $\bar{d}_{j}^{\lambda}(\gamma \partial + m_{d}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(\bar{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})] +$ $\frac{i_9}{i_0}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s^2_w - 1 - \gamma^5)e^{\lambda}) + (\bar{u}^{\lambda}_i\gamma^{\mu}(\frac{4}{3}s^2_w (1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \psi^{\lambda}]$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{c}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \tfrac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})] + L_{\lambda\kappa}^{\mu}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - L_{\lambda\kappa}^{\mu}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1+\gamma^5)u_j^{\kappa}) - L_{\lambda\kappa}^{\mu}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star$ $\gamma^{5}u_{j}^{\kappa}] - \frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g}{2}\frac{m_{d}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{u}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) \frac{ig}{2} \frac{m_{\lambda}^{\lambda}}{M} \phi^{0}(\bar{d}_{i}^{\lambda}\gamma^{5}d_{i}^{\lambda}) + \bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - M^{2})X^{-} +$ $\frac{M^2}{c_{*}^2}X^0 + \bar{Y}\partial^2 Y + igc_w W^+_{\mu}(\partial_{\mu}\bar{X}^0X^- - \partial_{\mu}\bar{X}^+X^0) + igs_w W^+_{\mu}(\partial_{\mu}\bar{Y}X^- - \partial_{\mu}\bar{X}^+X^0)$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\begin{array}{l} \frac{1-2c_w^2}{2c_w} igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-]+\frac{1}{2c_v}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+\\ igMs_w[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+\frac{1}{2}igM[\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0] \end{array}$

Can this be right?

Language

Are we speaking the wrong language?

"Matthews ... we're getting another one of those strange 'aw blah es span yol' sounds."

Physics Program

Electroweak studies

top rapidity

Some intriguing things have been revealed

Dibosons Events/8 GeV/c² 0005 0007 WW/WZ->lv jj ⁻ Data (4.3 fb⁻¹) ∣ WW/WZ * W+jets QCD Top Z+jets (a) 2000 1000 300 (b) 200 100 150 200 M_{jj} (GeV/c²) 100 50

Searches

4th generation

PDG says it's ruled out to 6σ....

..that's true if the masses are degenerate

Selection 1 lepton \bar{p} pt>20 GeV 4 jets w 200000000 pt>20 GeV Missing transverse energy t'W >20 GeV p<u>Sample</u>

4.6/fb

2.7/fb

b'

Final selection

- 2 like-signed leptons
- 2 jets >=1 btags
- Missing transverse energy

Direct searches

Direct searches

b' and t'

 $B(t' \rightarrow Wq)$ 0.8 0.6 0.2 0.4 0 (p, p, q) = 0.80 (0, 1)(1, 1)0.2 $t' \rightarrow Wq$ $t' \rightarrow WWWb$ $b' \rightarrow WWb$ $b' \rightarrow WWb$ 0.4 { u,c } 0.6 0.4 $t' \rightarrow Wq$ $t' \rightarrow WWq$ $b' \to Wq$ $b' \to Wq$ 0.8 0.2 þ, (0, 0)(1, 0)B 1 0.2 0.4 0.6 0.8 $B(t' \rightarrow Wb')$

Flacco, DW, Bar-Shalom & Tait arvix: 1005.1077

b' heavier than t'?

l+4jets t'→4j search
provides strong limits on
t' mass, imply strong
limits on b' if m_{b'} > m_{t'},
stronger than limits from
WWb data.

Flacco, DW, Bar-Shalom & Tait arvix: 1005.1077

heavy quarks

m_{Q'} > 290 GeV

Flacco, DW, Bar-Shalom & Tait arvix: 1005.1077

In progress: map to CKM space, apply constraints from other measurements

4th gen

Heavy quarks would enhance gg→H.

Tevatron Higgs searches are very sensitive.

New result rules out SM higgs in SM4 between 130 and 200 GeV.

gg+MET

gg+MET

