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.. Effective theories of superconductors

.

.

. ..
.

.

A superconductor is a material in which U(1)em is spontaneously broken.

dynamical fields: aµ ≡ (a0, ai ) , Φcl

for time-independent configurations and without electric fields

free energy = F =

∫
dd−1x Leff

(
F2

ij , |DiΦcl|2, |Φcl|, ...
)

For small enough fields we expect a Ginzburg-Landau (GL) free energy:

FGL =

∫
dd−1x

{ 1

4e20
F2

ij + |DiΦGL|2 + VGL(|ΦGL|)
}

ΦGL = constant × Φcl , VGL ≡ − 1

2ξ2GL

|ΦGL|2 + bGL|ΦGL|4

.

.

. ..
.

.

non-dynamical ai ↔ superfluid limit
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.. Comparing superconductors with superfluids

to illustrate the important role of the dynamical ai in superconductors

→ focus on vortices: aϕ = aϕ(r) , Φcl = e inϕψcl(r) , n = integer

(r , ϕ) are the polar coordinates restricted to 0 ≤ r ≤ R, 0 ≤ ϕ < 2π .

superfluids superconductors

field behavior ψcl

B=0
large r
≃ ψ∞

(
1− n2 ξ2

r2

)
ψcl

large r
≃ ψ∞ + ψ1√

r
e−r/ξ′

aϕ
large r
≃ n + a1

√
re−r/λ′

vortex energy Fn − F0
large R∼ n2 ln R

ξ
− n

2
BR2 finite as R → ∞

1st critical field Hc1
large R
≃ 2

R2 ln
R
ξ

generically ̸= 0 as R → ∞

2nd critical field Hc2 =
1

2ξ2GL
Hc2 =

1
2ξ2GL
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.. Motivations for holographic superconductors

To understand how and when the spontaneous symmetry breaking of
U(1)em occurs one needs a microscopic theory.

BCS theory (Bardeen, Cooper, Schrieffer, 1957) describes “conventional
superconductors” only.

There are also “unconventional superconductors”.

e.g. some high-temperature
superconductors (HTSC)
which, unlike BCS theory, seem to
involve strong coupling.

important applications;
e.g. HTSC current leads

for the LHC magnets

.

.

. ..
.

.

→ apply the AdS/CFT correspondence
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.. The holographic model (Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008)

ds2 =
L2

z2

[
−f (z)dt2 + dx2

1 + ...+ dx2
d−1

]
+

L2

z2f (z)
dz2 , f (z) = 1−

(
z

zh

)d

O ↔ Ψ
Ψ|z=0 = s = source of O

Ĵµ ↔ AM

Aµ|z=0 = aµ = source of Ĵµ

S =
1

g 2

∫
dd+1x

√
−G

(
−1

4
F2

MN − |DMΨ|2
)

Jµ = ⟨Ĵµ⟩ ∝ z3−dFzµ|z=0 , Φcl = ⟨O⟩ ∝ z1−dDzΨ
∗|z=0

z  =d /(4  T)π h

z=0 z=z h
z

B
H

 h
or

iz
on

A
dS

−
bo

un
da

ry

.

.

. ..
.

.

However, that (Dirichlet) boundary condition corresponds to a superfluid.

.

.

. ..
.

.

→ non-dynamical ai !
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Jµ = ⟨Ĵµ⟩ ∝ z3−dFzµ|z=0 , Φcl = ⟨O⟩ ∝ z1−dDzΨ
∗|z=0

Superconducting phase

no xµ-dependence (homogeneous solutions)
and Ai = 0

µ = A0|z=0

T < Tc = 0.03(0.05)µ for d = 3(4)

z)

z  =d /(4  T)π h

Ψ(

z=0 z=z h
z

B
H

 h
or

iz
on

A
dS

−
bo

un
da

ry

.

.

. ..
.

.

However, that (Dirichlet) boundary condition corresponds to a superfluid.

.

.

. ..
.

.

→ non-dynamical ai !

Alberto Salvio Emergent Gauge Fields in Holographic Superconductors



.. The holographic model (Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008)

ds2 =
L2

z2

[
−f (z)dt2 + dx2

1 + ...+ dx2
d−1

]
+

L2

z2f (z)
dz2 , f (z) = 1−

(
z

zh

)d

O ↔ Ψ
Ψ|z=0 = s = source of O
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Non homogeneous solutions with Ai ̸= 0 have also been found.
(Albash, Johnson, 2008; Nakano, Wen, 2008; Maeda, Okamura, 2008; Hartnoll, Herzog, Horowitz, 2008;

Montull, Pomarol, Silva, 2009; Keranen, Keski-Vakkuri, Nowling, Yogendran, 2009; Wang, Wu, Yang, 2010)
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.. Dynamical aµ in holography

impose a dynamical equation for aµ

.

.

. ..

.

.

Jµ +
1

e2b
∂νFνµ + Jµext = 0

Here, for generality, we have added a kinetic term for aµ and a background
external current Jµext .

Then we must add to S the following term∫
ddx

[
− 1

4e2b
F2
µν + AµJ

µ
ext

]
z=0

.

by using Jµ = Ld−3

g2
z3−dFzµ|z=0

.

.

. ..

.

.

Ld−3

g 2
z3−dF µ

z

∣∣∣
z=0

+
1

e2b
∂νFνµ

∣∣∣
z=0

+ Jµext = 0

This is an AdS-boundary condition of the Neumann type.
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.. Dynamical aµ in holography

.

.

. ..

.

.

Ld−3

g 2
z3−dF µ

z

∣∣∣
z=0

+
1

e2b
∂νFνµ

∣∣∣
z=0

+ Jµext = 0

d = 3 + 1 case

Jµ is logarithmically divergent:

1

z
∂zAµ

∣∣∣
z=0

= −∂νFνµ ln z
∣∣∣
z=0

+ ...

We can absorb the divergence in 1
e2
b
∂νFνµ

∣∣∣
z=0

to define a renormalized electric charge e0
in the normal phase (Φcl = 0):

1

e20
=

1

e2b
− L

g 2
ln z |z=0 + finite terms

.

.

. ..

.

.

aµ breaks conformal invariance
(the same is true for any d > 4).

d = 2 + 1 case

no divergence ⇒
we can take eb → ∞
so 1

e2
b
∂νFνµ

∣∣∣
z=0

→ 0

.

.

. ..

.

.

In this case aµ does not
break conformal invariance
and can be considered as
an emerging phenomenon:
its kinetic term is induced
by the dynamics.
(see also Witten, 2003)
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.. Vortex solutions in holographic superconductors

Vortex ansatz: Ψ = ψ(z , r)e inϕ , A0 = A0(z , r) , Aϕ = Aϕ(z , r)

AdS-boundary conditions: s = 0 , µ = constant ,
Ld−3

g2
z3−d∂zAϕ

∣∣∣
z=0

+ 1
e2
b
r∂r

(
1
r
∂rAϕ

) ∣∣∣
z=0

= 0 , (for Jµext = 0)

Alberto Salvio Emergent Gauge Fields in Holographic Superconductors



.. Vortex solutions in holographic superconductors

Vortex ansatz: Ψ = ψ(z , r)e inϕ , A0 = A0(z , r) , Aϕ = Aϕ(z , r)

AdS-boundary conditions: s = 0 , µ = constant ,
Ld−3

g2
z3−d∂zAϕ

∣∣∣
z=0

+ 1
e2
b
r∂r

(
1
r
∂rAϕ

) ∣∣∣
z=0

= 0 , (for Jµext = 0)

Figures
The modulus of ⟨O⟩ (up to a factor Ld−3/g2)
and B versus r from our holographic model
for n = 1 and d = 2 + 1 (solid lines on the left)
and d = 3 + 1 (solid lines on the right).
The dashed lines are the corresponding profiles
in the GL theory.

In units of µ = 1

Determination of GL parameters:

ξ2GL = 1
2Hc2

,

the matching at large r
gives bGL and e0
in the GL free energy.
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We observed aϕ ≃ n + a1
√
re−r/λ′

, for large r .
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.. Vortex solutions in holographic superconductors
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Figures
Hc1 and Hc2 versus T
for d = 2 + 1 (left)
and d = 3 + 1 (right).

In units of µ = 1
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. ..
.

.

Hc1 < Hc2 for every T , so the holographic superconductors are of Type II.

Interestingly, HTSC are also of Type II.

Alberto Salvio Emergent Gauge Fields in Holographic Superconductors



.. Conclusions

Summary of the main points

We have discussed how to introduce a dynamical gauge field in
holographic superconductors.

For d = 2 + 1, aµ can be considered as an emergent phenomenon, while,
for d = 3 + 1, it is external to the CFT.

We have presented vortex solutions in the presence of a dynamical aµ.

The holographic superconductors are of Type II.

to know more see arXiv:1005.1776

Outlook

applications to other situations (different from vortices):
e.g. electromagnetic fields near the surface of a finite size superconductor
or in the Josephson effect

extensions to p-wave and d-wave holographic superconductors

extensions to non-relativistic scale invariant theories
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.. Vortex solutions in holographic superfluids

Vortex ansatz: Ψ = ψ(z , r)e inϕ , A0 = A0(z , r) , Aϕ = Aϕ(z , r) ,

AdS-boundary conditions: s = 0 , µ = constant ,
aµ = Aµ|z=0 =

1
2
Br 2 (Dirichlet boundary condition)

Figures
The modulus of ⟨O⟩ and ⟨Ĵϕ⟩ (up to Ld−3/g2)
versus r from the holographic model for n = 1 and
d = 2 + 1 (solid lines on the left)
and d = 3 + 1 (solid lines on the right).
In this plot we chose T/Tc = 0.3 and B = 0.
The dashed lines are the corresponding profiles
in the GL model.

In units of µ = 1

Determination of GL parameters:

ξ2GL = 1
2Bc2

the matching at large r then
gives bGL.
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