Massive Pions and Baryons in Holographic QCD

Giuliano Panico

ETH Zürich

Planck 2010 - 3 June 2010

The Model

- The Mesonic Sector
- The Baryonic Sector

Can we describe low energy QCD in the large- N_c expansion in a simple perturbative way?

What do we know?

QCD at large N_c is described by a weakly interacting theory of mesons

- towers of mesons
- meson couplings $\sim 1/\sqrt{N_c}$
- meson masses $\sim N_c^0$

Describe low-energy QCD at large N_c with extra dimensions

Bottom-up approach guided by holography

[Son, Stephanov (et al.); Da Rold, Pomarol; ...]

Features of the 5D models:

- automatically includes towers of vector and scalar mesons
- very predictive framework
- incorporates calculable Skyrme model

[Pomarol, Wulzer]

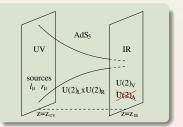
• valid effective theories: $\Lambda_5/m_{\rho} \sim N_c^{1/3}$

The Model

A 5D Model for QCD

We want to describe QCD with two massive flavors.

We consider a 5D Model $ds^2 = a^2(z)(\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dz^2)$ with bulk gauge group $U(2)_L \times U(2)_R$


 Chiral symmetry breaking at the IR boundary

$$\left.\left(L_{\mu}-R_{\mu}\right)\right|_{z=z_{\mathrm{IR}}}=0$$

$$\left. \left({{\it L}_{\mu 5} + {\it R}_{\mu 5} }
ight)
ight|_{{\it Z} = {\it Z}_{
m IR}} = 0$$

 Dirichlet cond. with "sources" at the UV boundary

$$L_{\mu}|_{z=z_{UV}} = I_{\mu}, \quad R_{\mu}|_{z=z_{UV}} = r_{\mu}$$

The Model

The Quark Masses

The quark masses are incorporated by introducing a 5D scalar field with $U(2)_L \times U(2)_R$ transformations

 $\Phi
ightarrow g_L \Phi \, g_R^\dagger$

Quark masses determine the UV boundary condition

$$\Phi\big|_{Z_{\mathsf{UV}}} = \left(\frac{Z_{\mathsf{UV}}}{Z_{\mathsf{IR}}}\right)^{\Delta} M_{q}$$

where $\Delta \equiv 2 - \sqrt{4 - M_{\Phi}^2 L^2}$

Contribution to the chiral symmetry breaking from the IR

$$\Phi\big|_{\mathbf{Z}_{\mathrm{IR}}} = \xi$$

Mesons from Kaluza–Klein Modes

We can identify the mesons with the KK modes of the 5D fields

There is a pseudo-Goldstone boson: the pion

- described by the usual χ **PT** Lagrangian
- pion mass: $m_{\pi}^2 \sim \xi M_q$
- ► predictions for the decay constant and for O(p⁴) terms in the Lagrangian

The higher KK modes give the massive mesons

- Vector Meson Dominance automatically holds
- Correct N_c scaling for the decay constants and couplings

Fit on the Mesonic Observables (preliminary)

in progress with O. Domenech, A. Pomarol, A. Wulzer

	Experiment (MEV)	AdS ₅ (MEV)	Deviation
m_{π}	135 MeV	134 MeV	0.6%
$m_{\pi(1300)}$	1300 MeV	1230 MeV	5.6%
$m_{ ho}$	775 MeV	783 MeV	1.0%
m_{ω}	782 MeV	783 MeV	0.1%
$m_{a_1(1260)}$	1230 MeV	1320 MeV	7.6%
$m_{a_0(980)}$	980 MeV	1040 MeV	6.5%
$m_{f_0(980)}$	980 MeV	1040 MeV	6.5%
f_{π}	92 MeV	89 MeV	3.6%
$f_{ ho}$	153 MeV	149 MeV	2.7%
f_{ω}	140 MeV	149 MeV	6.4%
$g_{ ho\pi\pi}$	6.0	4.89	22.7%
$g_{\omega\pi\gamma}$	0.72	0.71	1.1%
$g_{ ho\pi\gamma}$	0.22	0.24	7.9%
$g_{\omega ho\pi}$	15.0	15.6	3.7%
RMSE			7.7%

the model has only 5 parameters

[Pomarol, Wulzer; G. P., Wulzer]

[Witten]

Baryons arise as solitons at large N_c

The 5D model admits non-trivial static solutions with conserved topological charge *B* identified with the baryon number

$$B = \frac{1}{32\pi^2} \int d^3x \int dz \, \varepsilon_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} \operatorname{Tr} \left[L^{\hat{\mu}\hat{\nu}} L^{\hat{\rho}\hat{\sigma}} - R^{\hat{\mu}\hat{\nu}} R^{\hat{\rho}\hat{\sigma}} \right]$$

where $\hat{\mu}, \hat{\nu}, \dots$ label the four spatial coordinates

The theory is perturbative: $\Lambda_5 \rho \simeq \Lambda_5 L \sim 2 N_c^{1/3}$

► Not the case in the original Skyrme model $\Lambda_4 \rho \simeq 1$!

Static Properties of the Nucleons (very preliminary)

in progress with O. Domenech, A. Pomarol, A. Wulzer

	Experiment	AdS_5	Deviation
M _N	940 MeV	\sim 1070 MeV	\sim 14%
$\mu_{\mathcal{S}}$	0.44	0.38	16%
μ_V	2.35	\sim 1.2	$\sim 100\%$
$g_{\scriptscriptstyle A}$	1.25	\sim 0.6	$\sim 100\%$
$\sqrt{\langle r_{E,S}^2 \rangle}$	0.79 fm	0.82 fm	4%
$\sqrt{\langle r_{E,V}^2 \rangle}$	0.93 fm	0.97 fm	4%
$\sqrt{\langle r_{M,S}^2 \rangle}$	0.82 fm	0.84 fm	3%
$\sqrt{\langle r_{M,V}^2 \rangle}$	0.87 fm	0.87 fm	0.5%
$\sqrt{\langle r_A^2 \rangle}$	0.68 fm	\sim 0.6 fm	\sim 13%

parameters fixed by the meson fit

Conclusions and Outlook

Holographic QCD models capture many features of large-*N_c* QCD in a perturbative framework

- towers of mesons as KK modes of the 5D fields
- highly predictive model (only 5 parameters)

Baryons automatically arise as stable soliton solutions

calculable and insensitive to the UV cut-off

Future directions:

▶ Inclusion of the $U(1)_A$ anomaly and the η' mass

(some ideas with A. Wulzer)

Appendix

The 5D Lagrangian: Gauge Sector

The bulk Lagrangian for the gauge fields is

$$S_g = -\int d^5 x \, a(z) \frac{M_5}{2} \left\{ \text{Tr} \left[L_{MN} L^{MN} \right] + \frac{1}{2} \widehat{L}_{MN} \widehat{L}^{MN} + \{ L \to R \} \right\}$$

• We must also introduce a Chern–Simons term

$$S_{CS} = -i rac{N_c}{24\pi^2} \int d^5 x \left\{ \omega_5(L) - \omega_5(R)
ight\},$$

where

$$\omega_{5}(A) = \frac{3}{2}\widehat{A}\mathrm{Tr}\left[F^{2}\right] + \frac{1}{4}\widehat{A}\left(d\widehat{A}\right)^{2}$$

required to reproduce the Adler–Bardeen anomaly.

The 5D Lagrangian: Scalar Sector

The bulk Lagrangian for the scalar field is

$$S_{\Phi} = M_5 \int d^5 x \, a^3(z) \left\{ \operatorname{Tr} \left[(D_M \Phi)^{\dagger} D^M \Phi \right] - a^2(z) \, M_{\Phi}^2 \, \operatorname{Tr} [\Phi^{\dagger} \Phi] \right\}$$

where the covariant derivative is

$$D_M \Phi \equiv \partial_M \Phi - i L_M \Phi + i \Phi R_M$$