(7 TeV) LHC signatures of Yukawa-unified SUSY

S. Kraml LPSC Grenoble

in collaboration with H. Baer, A. Lessa, S. Sekmen, S. Summy

Planck 2010

From the Planck Scale to the ElectroWeak Scale 31 May - 4 June 2010, CERN

Ananthanarayan, Lazarides and Shafi, 1991 (and a long list to follow)

Framework: SUSY SO(10)

- SUSY GUTs based on SO(10) are particularly compelling
 - unify all matter of one generation in a 16-plet (incl. r.h. neutrino!)
 - automatic anomaly cancellation
- The simplest realizations (Higgs in a I0-plet) require, in addition to gauge coupling unification, unification of t-b-tau Yukawa couplings at M_{GUT}.

$$\hat{f} \ni f\hat{\psi}_{16}\hat{\psi}_{16}\hat{\phi}_{10}$$

- Particle content below M_{GUT} = MSSM (+RHN)
- Parameters: $m_{1/2}$, m_{16} , m_{10} , M_D^2 , A_0 , $tan\beta$, sign μ

$$m_{H_{u,d}}^2 = m_{10}^2 \mp M_D^2$$

c.f. NUHM: $m_{1/2}$, m_0 , $m_{H_{u,d}}$, A_0 , $\tan\beta$, sign μ .

using Isajet 7.79

as opposed to Blazek, Dermisek, Raby et al., who do a top-down fit imposing exact Y.U., which gives a pull in the EW observables. (see talk by D. Guadagnoli in this session)

using Isajet 7.79

as opposed to Blazek, Dermisek, Raby et al., who do a top-down fit imposing exact Y.U., which gives a pull in the EW observables. (see talk by D. Guadagnoli in this session)

using Isajet 7.79

using Isajet 7.79

Conditions for Yukawa unification

- \star For μ >0, as preferred by b \rightarrow s γ , Yukawa unification (YU) can only be realized for very particular parameter relations
 - $m_{16} \sim 5 15$ TeV,
 - $A_0^2 \simeq 2m_{10}^2 \simeq 4m_{16}^2$, $(A_0 < 0)$
 - $m_{1/2} \ll m_{16}$,
 - $\tan \beta \sim 50$.

\star D-term splitting

$$m_Q^2 = m_E^2 = m_U^2 = m_{16}^2 + M_D^2$$

$$m_D^2 = m_L^2 = m_{16}^2 - 3M_D^2$$

$$m_{\tilde{\nu}_R}^2 = m_{16}^2 + 5M_D^2$$

$$m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2.$$

NB: we need
$$m_{H_u}^2 < m_{H_d}^2$$
 at M_{GUT} , so $M_D^2 > 0$.

- $R = \frac{max(f_t, f_b, f_\tau)}{min(f_t, f_b, f_\tau)}$
- D-term splitting w/o RHN gives R~1.08 (i.e. 8% unification)
- Splitting of only m_H's ("just-so HS") allows for R~1.01
- D-term splitting with RHN gives R~I.04,
- ... but if we allow in addition small non-degeneracy of 3rd vs. 1st/2nd generation, we get $R \sim 1.02$

Baer et al., 0908.0134

Conditions for Yukawa unification

★ For μ >0, as preferred by b→s γ , Yukawa unification (YU) can only be realized for very particular parameter relations

0.

- $m_{16} \sim 5 15$ TeV,
- $A_0^2 \simeq 2m_{10}^2 \simeq 4m_{16}^2$, $(A_0 < 0)$
- $m_{1/2} \ll m_{16}$,
- $\tan \beta \sim 50$.

\star D-term splitting

$$\begin{split} m_Q^2 &= m_E^2 = m_U^2 &= m_{16}^2 + M_D^2 \\ m_D^2 &= m_L^2 &= m_{16}^2 - 3M_D^2 \\ m_{\tilde{\nu}_R}^2 &= m_{16}^2 + 5M_D^2 \\ m_{H_{u,d}}^2 &= m_{10}^2 \mp 2M_D^2. \end{split}$$

"just-so" Higgs splitting (HS) case
B: we need $m_{H_u}^2 < m_{H_d}^2$ at $M_{\rm GUT}$, so $M_D^2 >$

- D-term splitting w/o RHN gives R~1.08 (i.e. 8% unification)
- Splitting of only m_H's ("just-so HS") allows for R~1.01
- D-term splitting with RHN gives R~I.04,
- ... but if we allow in addition small non-degeneracy of 3rd vs. 1st/2nd generation, we get $R \sim 1.02$

Ν

Baer et al., 0908.0134

Typical mass spectra

- Ist/2nd generation scalars in the multi-TeV range (5-15 TeV)
- 3rd gen. scalars, heavy Higgses and higgsinos in the 1-3 TeV range
- light gauginos: LSP ~ 50-80 GeV, gluino ~ 300-500 GeV
- c.f "effective SUSY" by Cohen, Kaplan, Nelson '1996

Evolution of gaugino masses in mSUGRA and Yukawa-unified SO(10) HS model

Typical mass spectra

- Ist/2nd generation scalars in the multi-TeV range (5-15 TeV)
- 3rd gen. scalars, heavy Higgses and higgsinos in the 1-3 TeV range
- light gauginos: LSP ~ 50-80 GeV, gluino ~ 300-500 GeV
- c.f "effective SUSY" by Cohen, Kaplan, Nelson '1996

Evolution of gaugino masses in mSUGRA and Yukawa-unified SO(10) HS model

Typical mass spectra

- Ist/2nd generation scalars in the multi-TeV range (5-15 TeV)
- 3rd gen. scalars, heavy Higgses and higgsinos in the 1-3 TeV range
- light gauginos: LSP ~ 50-80 GeV, gluino ~ 300-500 GeV
- c.f "effective SUSY" by Cohen, Kaplan, Nelson '1996

R versus gluino mass, points from a MCMC scan for small R

LHC reach at 7 TeV

We consider model lines for HS and DR3 cases as function of m(gluino) up to 700 GeV.

Gluino-pair prod. dominated by gg fusion, $\sigma(LO) \sim I$ pb at m(gluino) ~ 525 GeV.

Gluino signatures are dominanted by 3-bdy decays into heavy flavours:

 $\tilde{g} \to \tilde{\chi}^0_{1,2} b \bar{b}, \, \tilde{\chi}^{\pm}_1 t b$

DR3t

 $b\overline{b} + W(1v)$ $b\overline{b} + Z$

Z + iets

LHC reach at 7 TeV

Event simulation for HS and DR3 model lines:

- Isajet 7.79 for the signal
- QCD, 2- and 3-bdy BGs with Alpgen
- 4t, 4b, 2t2b BGs with Madgraph
- Phythia for showering and hadronization
- Generic toy detector simulation

Basic Cuts "C0":

- $n(jets) \ge 4$ with $p_T > 50 GeV$
- hardest jet p_T >100 GeV
- $S_T \ge 0.2$ (transv sphericity)
- $n(b) \ge 1$ (b-eff. 60%)

Results after C0-based selection					
	$\sigma(n(b) \ge 3)$	$\sigma(n(b) \ge 4)$	$\sigma(OS)$		
HSb	$899 \mathrm{fb}$	176 fb	$99~{\rm fb}$		
DR3b	1334 fb	243 fb	22 fb		
BG	1911 fb	70 fb	11 fb		

1e+07

1e+06

1e+05

100

0.1

0

0

٥

(fp) ع 1000 ع

LHC reach at 7 TeV

Event simulation for HS and DR3 model lines:

- Isajet 7.79 for the signal
- QCD, 2- and 3-bdy BGs with Alpgen
- 4t, 4b, 2t2b BGs with Madgraph
- Phythia for showering and hadronization
- Generic toy detector simulation

Basic Cuts "C0":

- $n(jets) \ge 4$ with $p_T > 50 GeV$
- hardest jet p_T >100 GeV
- $S_T \ge 0.2$ (transv sphericity)
- $n(b) \ge 1$ (b-eff. 60%)

Results after C0-based selection					
	$\sigma(n(b) \ge 3)$	$\sigma(n(b) \ge 4)$	$\sigma(OS)$		
HSb	$899 \mathrm{fb}$	176 fb	$99~{\rm fb}$		
DR3b	1334 fb	243 fb	22 fb		
BG	$1911 { m ~fb}$	70 fb	11 fb		

LHC reach at 7 TeV

Event simulation for HS and DR3 model lines:

- Isajet 7.79 for the signal
- QCD, 2- and 3-bdy BGs with Alpgen
- 4t, 4b, 2t2b BGs with Madgraph
- Phythia for showering and hadronization
- Generic toy detector simulation

Basic Cuts "C0":

- $n(jets) \ge 4$ with $p_T > 50 GeV$
- hardest jet pT >100 GeV
- $S_T \ge 0.2$ (transv sphericity)
- $n(b) \ge 1$ (b-eff. 60%)

Results after C1-based selection				
	$\sigma(n(b) \ge 3)$	$\sigma(n(b) \ge 4)$	$\sigma(OS)$	
HSb	364 fb	$68 \mathrm{fb}$	$81~{\rm fb}$	
DR3b	782 fb	139 fb	23 fb	
BG	16 fb	2 fb	$9~{\rm fb}$	

LHC reach at 7 TeV

Conclusions

- Yukawa-unified SUSY GUT based on SO(10) is quite compelling.
- Typical mass spectrum has inverted hierarchy, c.f. "effective SUSY" with multi-TeV first/second generation & (sub)TeV 3rd generation.
 Iight gluino of ca 300-500 GeV mass !
- Quite good discovery potentials for such scenarios:
 - ★ Tevatron: m(gluino)~430 GeV with 10 fb⁻¹
 - ★ LHC@7TeV: m(gluino)~630 GeV with I fb⁻¹
- Search in multi-b channels is essential for early discovery.
- LHC [and Tevatron] may soon discover or rule out the simplest case of a SO(10) SUSY GUT.

Conclusions

- Yukawa-unified SUSY GUT based on SO(10) is quite compelling.
- Typical mass spectrum has inverted hierarchy, c.f. "effective SUSY" with multi-TeV first/second generation & (sub)TeV 3rd generation.
 Iight gluino of ca 300-500 GeV mass !
- Quite good discovery potentials for such scenarios:
 ★ Tevatron: m(gluino)~430 GeV with 10 fb⁻¹
 - ★ LHC@7TeV: m(gluino)~630 GeV with I fb⁻¹
- Search in multi-b channels is essential for early discovery.
- LHC [and Tevatron] may soon discover or rule out the simplest case of a SO(10) SUSY GUT.

Backup

What about the Tevatron?

Tevatron reach

current mSUGRA limit for heavy squarks (2fb⁻²)

Gluino-pair prod. dominated by qq fusion. Negative interference of s-, t-, u-channels for m(squark)~m(gluino)!

Xsection grows with increasing squark mass!

Gluino decays dominated by $\tilde{\chi}_2^0 b \overline{b}$ channel. We adopt a YU model line by starting from a HS point with m₁₆=10 TeV and R~1.02 and varying m_{1/2}.

Tevatron reach

Tevatron reach

NB: importance of b-tagging

 Requiring I, 2, or more b-jets can significantly enhance the signal/bg in many scenarios, e.g., I5-20% in the CMSSM focus point region.

• Typical if 3rd generation is lighter then 1st/2nd gen. and $m_{\tilde{g}} \ll m_{\tilde{q}}$; enhances gluino decays into t or b via on- or off-shell stop/sbottom

Kadala, Mercadante, Mizukoshi, Tata,

arXiv:0803.0001

CDF search for gluinos/squarks

Large tan β , large $\delta m_b \rightarrow$ important constraints from B physics

Relic density

 Yukawa-unified solutions typically feature a bino-like neutralino LSP whose relic density is way too large

Random scan

• MCMC scan over $m_{1/2}$, m_{16} , m_{10} , M_D^2 , A_0 , tan β for small R (and $\Omega h^2 = 0.115 \pm 0.021$)

• MCMC scan over $m_{1/2}$, m_{16} , m_{10} , M_D^2 , A_0 , tan β for small R (and $\Omega h^2 = 0.115 \pm 0.021$)

Yukawa-unified scenarios with mixed axion/axino dark matter

C1: $f_a/N = 10^{11}$ GeV, $\Omega_{axion}h^2 \sim 0.017$; DM dominantly therm. produced axinos.

C2: $f_a/N = 4 \times 10^{11}$ GeV, $\Omega_{axion}h^2 \sim 0.084$; DM dominantly axions + some mixed cold and warm axinos.

C3: $f_a/N = 10^{12}$ GeV, $\Omega_{axion}h^2 \sim 0.084$; DM dominantly axions + some mixed cold and warm axinos.

C4: $f_a/N = 10^{12}$ GeV, <a>~0, $\Omega_{axion}h^2$ ~0; DM dominantly axinos, we choose $(\Omega_{axino}h^2)^{TP}=0.1$ and $(\Omega_{axino}h^2)^{NTP}=0.01$

Message: can achieve consistent cosmology for Yukawa-unified SUSY

Baer et al, arXiv:0812.2693