W/Z-Gamma Production at: NLO in Powheg Method

Dart-yin A. Soh

IPPP, Durham
Supervised by P. Richardson
Academia Sinica
Sun Yat-sen University

Outline:

- Motivations
- Matrix element Calculations
- Gluon radiation
- Quark/Anti-quark radiation
- Shower in Powheg Method
- Gluon radiation
- Quark/Anti-quark radiation
- Outlook

Why Vector Boson-Photon Production?
Testing Standard Model and Search for New Physics:

- Anomalous WWY coupling: CP- conserving к, λ, añd ? $\tilde{\lambda}$
- Are there Z_{Y} or $Z_{\gamma \gamma}$ couplings? Gauge symmetry breaking!
- Agree well with the standard model in Tevatron, and how about in LHC?

WY production at D \varnothing^{*} :

Best points:

$$
\begin{aligned}
& (-0.084,-0.05) \\
& (+0.084,+0.05)
\end{aligned}
$$

$$
|\Delta \kappa| \leq 0.51
$$

$-0.12 \leq \lambda \leq 0.13$

*Adam Lyon, ICHEP’08

But NLO Matching ME with PS!

- LHC: high energy scale and high luminosity: we need precise NLO calculations
- NLO ME (BLO): additional parton radiation + naïve parton Shower double counting and invalid in IR phase space region
- Soft gluon radiation cut δ_{s} and photon isolation cut for quark radiation δ_{c} to cancel the IR divergence

Methods to match NLO matrix element with NLO parton shower: Implement Powheg in Herwig++

Catani-Seymour framework

- Born and radiation phase space mapping $\quad \Phi_{n+1} \Rightarrow \bar{\Phi}^{(\alpha)}{ }_{B}, \Phi^{(\alpha)}{ }_{\text {rad }}$

C-S variables: (e.g. $\quad x_{i, a b}, \tilde{v}_{i}, \phi$ in gluon radiation)

- Separate the real radiation into pieces $R^{(\alpha)}\left(\Phi^{(\alpha)}{ }_{r a d}, \bar{\Phi}^{(\alpha)}{ }_{B}\right)$ with different singular regions in Catani-Seymour Formalism:

$$
R=\sum_{\alpha} Q_{\alpha}\left(\Phi^{(\alpha)} r a d \bar{\Phi}^{(\alpha)}{ }_{B}\right)+\quad \text { finite term }
$$

- Then $R^{(\alpha)}=R \cdot \frac{Q_{\alpha}}{\sum_{\alpha^{\prime}} \alpha_{\alpha^{\prime}}}$
- Make matrix element finite separately and free of cuts, and also implement Powheg in C-S subtraction framework easily

NLO matrix element

- Subtraction formalism real radiation matrix element piece finite and can be calculated numerically
- The sum of dipoles, virtual loop and PDF \& FF remnants is therefore and can be calculated together analytically:

$$
\begin{aligned}
& {\left[\int_{\Phi_{n a d}} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)\right]+d \sigma_{a b}^{V}\left(p_{a}, p_{b}\right)+d \sigma_{a b}^{C}\left(p_{a}, p_{b}, \mu_{F}^{2}\right) } \\
& \sigma_{a b}^{\mathrm{NLO}}\left(p_{a}, p_{b} ; \mu_{F}^{2}\right)=\int_{m+1}\left(d \sigma_{a b}^{R}\left(p_{a}, p_{b}\right)-d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)\right) \\
&+\left[\int_{a+1}^{m} d \sigma_{a b}^{A}\left(p_{a}, p_{b}\right)+\int_{m} d \sigma_{a b}^{\nu}\left(p_{a}, p_{b}\right)+\int_{m} d \sigma_{a b}^{c}\left(p_{a}, p_{b} ; \mu_{F}^{2}\right)\right]
\end{aligned}
$$

- Gluon radiation \& quark radiation

Singular Regions

Gluon Radiation for ME

- 8 diagrams for the real piece

- Dipoles: Gluon is emitted by one of the initial $\mathrm{q} / \overline{\mathrm{q}}$, with another \bar{q} / q as spectator: $\mathcal{D}^{\mathrm{q} g, \bar{q}}+\mathcal{D}^{\overline{\mathrm{q}}, \mathrm{q}}$
- Splitting factor $\left.V^{\text {ai, }}\left(\Phi^{(\alpha)}{ }_{r a d}\right)=8 \pi \alpha_{S} C_{F} \frac{1+x_{i, a b}^{2}}{1-x_{i, a b}}\right)$
- The calculation of these dipoles is straight-wards
- When we integrate the C-S variables $x_{i, a b}, \tilde{v}_{i}, \phi$ and sum with virtual loop and PDF remnant, we will find the whole contribution is finite, can be performed Born event generation.

Quark/Anti-quark Radiation for ME

- Also 8 diagrams for real piece similarly

- 2 singular regions $\rightarrow 2$ kinds of Dipoles:
[$\mathrm{q} / \overline{\mathrm{q}}$ is emitted by the initial gluon, with another $\bar{q} / q a s$ spectator: QCD type, just similar to the previous one $\mathcal{D}^{\text {gq, } \bar{q}}$
[ix q / \bar{q} is emitted by the final photon, with initial q^{\prime} / \bar{q} and W boson as spectators: QED type dipoles $\mathcal{D}_{\gamma q}^{b(n)}+\mathcal{D}_{\gamma q, W}$
 function remnants
- Such QED type dipoles are not standard, how to construct them?
- color charges $T_{c} \quad \Longrightarrow$ electric charges Q_{c}
- In soft limit and collinear limit, back to splitting function $\hat{P}_{y q}(z, \varepsilon)$
- Electric charges aren't conversed when only include $\mathcal{D}_{\gamma q}^{b(n)}+\mathcal{D}_{\gamma q, W}$ then electric charges aren't well defined! :

Quark/Anti-quark Radiation for ME

- Study the electric conserved dipoles for photon radiation instead
- 6 such dipoles $\mathcal{D}_{c}^{(n) a \gamma}+\mathcal{D}_{w}^{(n) b y}+\mathcal{D}_{c \gamma}^{(n) b}+\mathcal{D}_{c \gamma, W}^{(n)}+\mathcal{D}_{W_{\gamma}}^{(n) b}+\mathcal{D}_{W_{\gamma, c}}^{(n)}$ the soft \& collinear limits are just the same as $q^{\prime} / \bar{q} \bar{q}^{\prime}$ radiation since the same real matrix element

- Electric charges are well defined, dipole structures: just like QCD final state gluon radiation; photon \& p_{T} cuts: safe
- Initial gluon and Z: electric neutral, thus not contribute
- Then $\mathcal{D}_{\gamma c}^{(n) b}\left(p_{r}, p_{v}, p_{c}, p_{a}, p_{b}\right)=-\frac{1}{2 p_{c} \cdot p_{\gamma}}$
$\left.{ }_{m, a b} \tilde{p}_{\gamma c}, \tilde{p}_{v} ; \tilde{p}_{a}, \tilde{p}_{b}\left|\frac{Q_{b} \cdot Q_{c \gamma}}{Q_{c \gamma}^{2}} V_{c \gamma}^{(n) b}\right| \tilde{p}_{r c}, \tilde{p}_{y} ; \tilde{p}_{a}, \tilde{p}_{b}\right\rangle_{m, a b}$ dipoles $\left.\quad \mathcal{D}_{\gamma c, W}^{(n)}\left(p_{r}, p_{v}, p_{c}, p_{c}, p_{b}\right)=-\frac{1}{2 p_{c} \cdot p_{y}} \quad m, a b \tilde{p}_{c}, \tilde{\mathcal{P}}_{V} ; \tilde{P}_{a}, \tilde{p}_{b}\left|\frac{Q_{W} \cdot Q_{c \gamma}}{Q_{c \gamma}^{2}} V_{c \gamma, W}^{(n)}\right| \tilde{p}_{y c}, \tilde{p}_{V} ; \tilde{p}_{a}, \tilde{p}_{b}\right\rangle_{m, a b}$
- Phase space mapping: gluon remains in z -axis \& notice constraints on angle θ. C-S mapping $z_{q q n}, u_{q}, \phi^{\prime}$ is totally identical

where $\langle s| V_{\gamma c}^{(n) b}\left(z_{y c n}\right)\left|s^{\prime}\right\rangle=8 \pi \mu^{2 \epsilon} \alpha Q_{c}^{2} \delta_{s, s}\left[\frac{1+\left(1-z_{y c n}\right)^{2}}{z_{y c n}}-\epsilon z_{y c n}\right]$

Powheg Method in Catani-Seymour framework

- NLO accuracy matching parton shower with matrix element
- Smooth IR region to high p_{T} region, no phase-space slicing
- Generate shower in single singular region defined in C-S framework every time as we did in ME: C-S variable to $p_{T}^{\text {min }}$ cut
© The hardest radiation is generated by Sudakov form factor:

$$
\Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)=\exp \left\{-\sum_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \int \frac{\left[d \Phi_{\mathrm{rad}} R\left(\boldsymbol{\Phi}_{n+1}\right) \theta\left(k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)-p_{\mathrm{T}}\right)\right]_{\alpha_{\mathrm{T}}}^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{\mathrm{r}}}=\boldsymbol{\Phi}_{n}}}{B^{f_{\mathrm{b}}}\left(\boldsymbol{\Phi}_{n}\right)}\right\}
$$

© The cross-section of Powheg:

$$
\begin{aligned}
d \sigma= & \sum_{f_{b}} \bar{B}^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right) d \boldsymbol{\Phi}_{n}\left\{\Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}^{\min }\right)\right. \\
& \left.+\sum_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \frac{\left[d \Phi_{\mathrm{rad}} \theta\left(k_{\mathrm{T}}-p_{\mathrm{T}}^{\min }\right) \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}}\right) R\left(\boldsymbol{\Phi}_{n+1}\right)\right]_{\alpha_{\mathrm{r}}}^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{r}}=\boldsymbol{\Phi}_{n}}}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)}\right\}
\end{aligned}
$$

Generate Radiation Events: Highest-pT-bid Method

- Real-to-Born ratio: different flavor structures $f_{b j}$ gluon radiation $q \bar{q}^{\prime} \rightarrow \gamma V \rightarrow \gamma V g$ vs. $q^{\prime} / \bar{q}^{\prime}$ radiation $q g \rightarrow \bar{q}^{\prime} V \rightarrow \bar{q}^{\prime} V \gamma ;$ and 2 different singular regions α_{r} each
- Generate radiation events with the probability:

$$
\left[\frac{R\left(\Phi_{n+1}\right)}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)} \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)\right)\right]_{\alpha_{\mathrm{T}}}^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{\mathrm{T}}}=\boldsymbol{\Phi}_{n}} d \Phi_{\mathrm{rad}}^{\alpha_{\mathrm{r}}} \text { with } \quad \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)=\prod_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \int_{b}\right\}} \Delta_{\alpha_{\mathrm{r}}}^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)
$$

- Hardest shower events $\left\lceil R^{\alpha_{F}}\left(\Phi_{n+1}\right)\right]^{\Phi_{n}^{\alpha_{r}=\Phi_{n}}}$ differ for different singular region when mapping to unique underlying Born $\bar{\Phi}^{(\alpha)}{ }_{n}$
- We can use highest-pT-bid method to generate shower events for each bytheir own probability

$$
\left[\frac{R^{\alpha_{\mathrm{I}}}\left(\boldsymbol{\Phi}_{n+1}\right)}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)} \Delta_{\alpha_{\mathrm{r}}}^{f_{b}}\left(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)\right)\right]^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{\mathrm{r}}}=\boldsymbol{\Phi}_{n}} d \Phi_{\mathrm{rad}}^{\alpha_{\mathrm{r}}}
$$

and choose the one with highest pT in each iteration.

Gluon Radiation for Powheg

- In Sudakov we should do p_{T} integration, thus map C-S variables to p_{T} : $\quad p_{T}=\bar{v}_{i}\left(1-x_{i a b}-\bar{v}_{i}\right) \hat{\bar{s}} / x_{i b b}$
- Since $x_{\omega \omega} \in[\bar{x}, 1]$, we can integrate out x_{ω} in Sudakov to get $d k_{T}^{2} d \bar{v}_{t} d \phi$:

- The R-B ratio is too complicated to integrate. However, we can estimate the upper bounding function of R / B with $\mathrm{C}-\mathrm{S}$ dipole and then use veto technique: solve k_{T} for uniform number $r=\Delta_{F, u}^{\alpha_{r}}\left(k_{T}\right) / \Delta_{f, u}^{\sigma_{r}}\left(k_{T, 0}\right)$ to generate event according to probability $R / B \cdot \Delta_{s}\left(k_{s}\right)$ by taking care the Jacobian, approximate upper bound and integrate out \bar{v}_{i} :
- The scale of QCD coupling is taken care $\alpha_{s}\left(k k_{r}^{2}\right.$ rather than constant
- Use Lambert-W function to solve the equation of $k_{\text {to generate } i t, ~}^{\text {th }}$ then generate \bar{v}_{i} and uniform ϕ

Quark/Anti-quark Radiation for Powheg

- $\alpha_{r}: q^{\prime} / \bar{q}$ collinear with initial gluon is similar to gluon radiation case, has no difficulty.
- α_{r} : $q^{\prime} \bar{q}$ collinear with photon: when using the dipole to estimate R-B ratio, 2 Born MEs are of different flavor structures:

- Mapping C-S variables to p_{T}, it's too complicated in lab frame, and it's impossible to succeeding integration: p should defined according to the direction of $k_{q}+k_{\gamma}$, so try to approximate by that in centre-of-mass frame!
 and integrate out $z\left(k_{r}^{2}, u\right)$, problem: $\mathrm{z}=\mathrm{o}$ singularity (soft photon)

Quark/Anti-quark Radiation for Powheg

- This case is just approximation $A=\left(k_{a}+k_{b}\right) \cdot \tilde{k}_{y g}=\left(\hat{s}-m_{\hat{y}}^{2}\right) / 2 \ll \hat{\jmath}$ making $\quad z \rightarrow 0$ k_{T}^{2} is finite, which isn't physical
- It's still possible according to the direction of $k_{q}+k_{\eta}$ approximate by reasonable $m_{v}^{2} \ll \hat{s}$: $\quad k_{T}^{2}=u z^{2}\left[(1-z)(1-u)\left(\hat{s}-m_{v}^{2}\right)-u m_{V}^{2}\right] /(z-u)^{2}$
- There is cube of z : integrate out $u\left(k_{T}^{2}, z\right)$
- When $z \rightarrow 0, u_{+}\left(k_{T}^{2}, z\right)$ can be finite: constraint on $\mathbf{u} u \in\left(0, u_{\text {in }}(z)\right]$ makes $z \in\left(z_{-}, 1\right],\left(z_{t}=\frac{2 \hat{s}-m_{2}^{2} \pm \sqrt{m_{i}^{2}\left(\hat{L}\left(\hat{s}-m_{2}^{2}\right)+m_{2}^{2}\right]}}{2\left(\hat{s}-m_{\hat{y}}^{2}\right)}\right)$, solve the spurious soft photon problem.
- But we have no upper limit on k_{T}^{2} now. $\quad u\left(k_{T}^{2}, z\right) \rightarrow$ ©s regularized by in the min integration of k_{T}
- So the upper bound of ${\Delta_{F, U}^{p}\left(k_{T}\right)}^{\text {s }}$ should be finite and simple when we do further approximation.

Outlook

- When we finish quark/qnti-quark radiation for Powheg, the whole NLO calculations is finally completed
- Complete the codes soon and then we have numerical results to compare with the previous WGamma MC tools and expect to be used in experimental data in near future
- Anomalous WWY couplings and beyond SM
- W/Z decay: ask for additional contributions of photon radiates from decayed lepton

