

- Why N_c suppressed terms may be important
- $\bullet\,$ Sources of N_c suppressed terms
- A general color basis
- Ordinary parton shower
- "Color amplitude shower"
- Preliminary results
- Future plans

Work in progress, JHEP 0909:087

CERN 13/01/2010 Malin Sjödahl

Why worry?

- " Non-leading color terms are suppressed by $1/\ N_c^2$ "
- Not always true, some simple counter examples...
- Is true for same order α diagrams with only gluons
- A parton shower is an all order (Sudakov) exponentiation

$$\Delta(t) = \exp(-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha}{2\pi} P(z))$$

- \bullet Certainly not only one power in α is needed
- Also, even if non-leading terms always were N_c^2 suppressed, the number of suppressed terms grow $\sim (N_{\rm partons}!)^2$

 \rightarrow Importance naively grows like $\sim (N_{\rm partons}!)^2/N_c^2$

Why worry?

Why worry?

- " Non-leading color terms are suppressed by $1/\ N_c^2$ "
- Not always true, some simple counter examples...
- Is true for same order α diagrams with only gluons
- A parton shower is an all order (Sudakov) exponentiation

$$\Delta(t) = \exp(-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha}{2\pi} P(z))$$

- \bullet Certainly not only one power in α is needed
- Also, even if non-leading terms always were N_c^2 suppressed, the number of suppressed terms grow $\sim (N_{\rm partons}!)^2$

 \rightarrow Importance naively grows like $\sim (N_{\rm partons}!)^2/N_c^2$

Some rescuing mechanisms?

- In the collinear regions, the emitted parton can be seen as coming from only one parton and the color structure is trivial \rightarrow no need for N_c suppressed terms
- Random averaging:

The suppressed terms sometimes contributes positively to the cross section, and sometimes negatively, perhaps they tend to cancel

- α_s suppression: $1/N_c^1$ suppressed terms tend to also be associated with powers of α_s
- Current parton showers actually do work quite well, this is a reason for believing that there is a suppression mechanism

Different sources of N_c -suppressed terms

- In a tree level parton shower (no virtual gluon exchange), N_c -suppressed terms are dropped as interferences are ignored
- Although an ordinary (tree level) parton shower resum the most important terms, there are suppressed terms from virtual gluon exchanges which rearrange the color structure, in

exp(large + moderate)

the moderate number is not irrelevant!

- \rightarrow different source of $N_c\text{-suppressed terms}$
- To treat the later source a basis for describing the color space is needed

A basis for the color space

The color space is a finite dimensional vector space equipped with a scalar product

$$< A, B > = \sum_{a,b,c,...} A_{a,b,c,...} (B_{a,b,c,...})^*$$

Individual colors are not observed so we always sum/average over them. One way of constructing a complete basis (for any fixed number of external colored) particles is to:

- Decompose all gluons into $q\bar{q}\mbox{-}pairs$
- Connect quarks and anti-quarks in all possible ways, such that the $q\bar{q}$ pairs corresponding the the same gluon are not connected
- (If only gluons, make sure the internal quarks and anti-quarks enter on equal footing)

A basis for the color space Example: $qg \rightarrow qg$

- Split gluons into $q\bar{q}$ pairs and connect lines in all possible ways

• In the $N_c \to \infty$ limit

A basis for the color space

- The number of basis tensors grows roughly factorially
- For $N_{\rm q}=N_{ar{\rm q}}$ and $N_g=0$, there are precisely $N_{\rm q}!$ basis states
- For states with gluons even more
- Hence the naive importance of suppressed terms $\sim (N_{partons}!)^2/N_c^2$
- The basis constructed in this way is complete
- Overcomplete for $N_c \neq \infty$ (and many partons)
- Virtual gluon exchange directly gives back a linear combination of the basis tensors \rightarrow can easily be treated in this basis
- By virtual gluon exchange leading N_c terms are diagonal

An ordinary parton shower

- Works at the cross section level
- Can be thought of in the language of the N_c → ∞ limit of the above basis (apart from C_F...).
- Also, it is easy to prove that in this limit only "color neighbors" radiate,
 i.e. only neighboring partons on the quark-lines in the basis → above basis superior for comparing to parton showers

A (toy) amplitude color shower

- Treat: $N_c = 3 \operatorname{color} \otimes \operatorname{random} \operatorname{number}$
- Emit one parton at the time (imagine an evolution time)
- Keep all contributions to the emission

- "shower < amplitude shower < all Feynman diagrams calculation"
- Will the ratio

$$\frac{|A(N_{\text{partons}})|^2|_{\text{Leding terms}}}{|A(N_{\text{partons}})|^2|_{\text{AII terms}}} \neq 1?$$

Preliminary results

• Starting with ${\rm q}\bar{\rm q}$ and radiate N_g gluons

• $\left\langle \frac{|A(N \text{partons})|^2 |\text{Leding terms}}{|A(N \text{partons})|^2 |\text{All terms}} \right\rangle$

N_g	$C_F = 4/3$	$C_F = 3/2$
1	1	9/8
2	0.97	1.22
3	0.92	1.31
4	0.85	1.36
5	0.77	1.39

- Importance of suppressed terms does grow, but not like $N_{partons}!^2$. Random averaging?
- Treatment of C_F is very important

Future plans

- Continue checking
- Further investigate simple results
- Add virtual gluon exchange (rearrange the color without emission)
- Speed up program by saving intermediate results
- Incorporate sensible momentum space

