Improved Parton Showers at Large Transverse Momenta

Richard Corke

Department of Theoretical Physics Lund University

January 2010

Richard Corke (Lund University)

Rescattering

- 2 Matching with POWHEG
- **3** Parton Showers at Large Transverse Momenta

Conclusions

5 PYTHIA 8 Status

Rescattering

- R. Corke and T. Sjöstrand, "Multiparton Interactions and Rescattering," arXiv:0911.1909 [hep-ph], to appear in JHEP.
- Already scattered partons allowed to scatter again as part of interleaved MPI framework

No "smoking-gun" signatures, but evidence of some effects

Matching with POWHEG

 POWHEG (Nason et al.) generates hardest emission (p₁) with a Sudakov

$$\mathrm{d}\sigma = \bar{B}(v)d\Phi_{v}\left[\frac{R(v,r)}{B(v)}\exp\left(-\int_{\rho_{\perp}}\frac{R(v,r)}{B(v)}\right)d\Phi_{r}\right]$$

PYTHIA shower variable inspired by lightcone kinematics

ISR: $p_{\perp \text{evol}}^2 = (1-z)Q^2 > (1-z)Q^2 - \frac{Q^4}{m_{ar}^2} = p_{\perp}^2$

- *p*⊥ relative to the emitting parton
- What scale to begin the shower?
 - ISR: $p_{\perp max} = k * p_{\perp fac}$ (but $p_{\perp} < p_{\perp evol}$)
 - ▶ FSR: $p_{\perp max} = k * p_{\perp fac}$ (but p_{\perp} relative to outgoing parton)
 - Alternative: start showers at high p_{⊥evol} and veto emissions above kinematic POWHEG scale
 - Even after a shower emission beneath the POWHEG scale, small chance that a subsequent emission may again be harder
- Start with top pair production
- Bottom pair production to come; any further issues?

Matching with POWHEG Top Pair Production

- Study the kinematic p_⊥ ratio of the first shower emission to POWHEG emission
- Ratios stay below unity for ISR, but some area of phase space not covered
- Ratios greater than unity for FSR due to different frame

Matching with POWHEG

Top Pair Production

- Veto only first emission or all emissions?
- Use final p_{\perp} of top pair to gauge size of effects
- Less than 10% difference between factorisation scale and veto scheme
- Almost no difference when vetoing subsequent emissions

- Aim to provide good default behaviour for any process, even when higher order corrections not available
- Top pair production
 - Large top mass; neglect FSR
 - Power shower ($p_{\perp max}^2 = s$) overestimates high- p_{\perp} tail
 - Wimpy shower ($p_{\perp max}^2 = M^2$) underestimates high- p_{\perp} tail
- \blacktriangleright Something in between? Consider $gg \rightarrow t\bar{t}g$
 - ▶ Small $p_{\perp g}$: approximate as $g \to gg + gg \to t\bar{t} \implies \frac{dp_{\perp g}^{c}}{p_{\perp g}^{2}}$ falloff
 - ▶ Large $p_{\perp g}$: approximate as $g \to t\bar{t} + gt \to gt \implies \frac{dp_{\perp g}^2}{p_{\perp g}^4}$ falloff
- Ansatz for damping the high- p_{\perp} shower tail

$$rac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}^2} \propto rac{1}{p_{\perp}^2} \, rac{kM^2}{kM^2 + p_{\perp}^2}$$

- Expect this to be valid for production of coloured final states
 - Coherence between initial and final state

Compare damped PYTHIA against POWHEG

- ► For top pairs, can compare against "correct" answer
- For other processes, use MadEvent to get a rough idea of corrections
- Generate probability of emissions as

$$\frac{\mathrm{d}\sigma_R}{\sigma_0} \exp\left(-\int \frac{\mathrm{d}\sigma_R}{\sigma_0}\right)$$

- No NLO prefactor, but assuming differences are small, qualitative comparisons can be made
- Corrections for renormalisation/factorisation scales

$$\frac{\alpha_s(p_{\perp}^2)}{\alpha_s(M^2)} \qquad \frac{x_1 f_1(x_1, p_{\perp}^2) * x_2 f_2(x_2, p_{\perp}^2)}{x_1 f_1(x_1, M^2) * x_2 f_2(x_2, M^2)}$$

- Test with top pairs
- No damping for W/Z pair production required
- MSSM squark/gluino production as a further check

Compare approximate MadEvent prescription against POWHEG

- Slight mismatch in POWHEG and PYTHIA scales
- Little difference in top pair production
- Study a damping of the high- p_{\perp} tail of the PYTHIA shower
- Good agreement for top pairs
- MadEvent + approximate Sudakov prescription for further checks
- Work in progress

- PYTHIA 8.135 now released
- Full update history within package
- Rescattering option now available
- Possibility to veto individual ISR/FSR emissions
- Static member methods eliminated (Settings, ParticleData and Rndm)
- Only interface to LHAPDF remains static (Fortran interface)
- 10 new proton PDF sets (with Tomas Kasemets)
 - MRST LO* (2007)
 - MRST LO** (2008)
 - MSTW 2008 LO (central member)
 - MSTW 2008 NLO (central member)
 - CTEQ6L

- CTEQ6.6 (NLO, central member)
- CT09MC1

CTEQ6I 1

- CT09MC2
- CT09MCS

Testing and comparisions of different PDF sets underway

Diffraction

- New framework for high-mass diffractive events (with Sparsh Navin)
- Follows the approach of Pompyt (P. Bruni, A. Edin and G. Ingelman)
- Total diffractive cross sections parameterised as before
- Introduce pomeron flux $f_{\mathbb{P}/p}(x_{\mathbb{P}}, t)$

$$\mathbf{x}_{\mathbf{P}} = \frac{E_{\mathbf{P}}}{E_{p}}, \ t = (p_{i} - p_{i}^{'})^{2}, \ M_{X}^{2} = x_{\mathbf{P}}s$$

Factorise proton-pomeron hard scattering

$$f_{
ho_1/
ho}(x_1, \mathsf{Q}^2) f_{
ho_2/\mathbb{P}}(x_2, \mathsf{Q}^2) \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}$$

- Existing PYTHIA machinery used to simulate interaction
- Initialise MPI framework for a set of different diffractive mass values; interpolate in between

Diffraction

- $M_X \leq 10 \,\text{GeV}$: original longitudinal string description used
- $M_X > 10 \,\text{GeV}$: new perturbative description used
- Four parameterisations of the pomeron flux available
- Five choices for pomeron PDFs
 - Q²-independent parameterisations, $x_P f(x_P) = N x_P^a (1 x_P)^b$
 - Pion PDF (one built in, others through LHAPDF)
 - H1 NLO fits: 2006 Fit A, 2006 Fit B and 2007 Jets
- Single and double diffraction included
- Central diffraction a future possibility
- Still to be tuned

Diffraction

• Comparisons to PYTHIA 6 and PHOJET have been made e.g. p_{\perp} distribution of single diffractive events

Backup

Transverse momentum definition(s)

Study kinematics of $3 \rightarrow 1 + 4$ in rest frame of 3 + 2:

