Motivat		Methods	Results	Conclusion
	Radiative	Corrections to	Semileptonic	Meson
		Decay	/S	
		-		
		Marek Schö	nherr ¹	
		IKTP TU Dre	esden	
		14/01/20)10	

 $^{1}\ensuremath{\mathsf{in}}$ collaboration with Florian Bernlochner, HU Berlin

Marek Schönherr

IKTP TU Dresden

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
Contents			

1 Motivation $-V_{xb}$, etc.

2 Methods

Marek Schönherr

IKTP TU Dresden

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
Motivation			

• Determination of V_{xb}

 $\Gamma_{\text{measured}} = \eta_{\text{QCD}}^2 \eta_{\text{QED}}^2 |V_{xb}|^2 \Gamma_{\text{Born}}'$

 \rightarrow experiments extract rates which include radiative effects

Corrections to measured kinematics

 \rightarrow real and virtual photons alter momenta of involved particles

 \rightarrow fits to kinematic variables can be very sensitive to slight

changes Phys. Rev. D 79, 012002(2009)

Marek Schönherr

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
Model			

- **1** QED corrections can be adequately described at $\mathcal{O}(\alpha)$
- 2 hadronic model fully characterises weak interaction
- $\ensuremath{\mathfrak{S}}$ presence of $\ensuremath{\mathrm{QED}}$ radiation does not modify structure of form factors
- momentum dependence of form factors negligible in loop integrations
- scalar/vector QED is sufficient to describe meson-photon interaction

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
Model			

- supplement phenomenological model with QED
 - scalar, fermion, vector $\ensuremath{\operatorname{QED}}$
 - · emission off phen. vertex through minimal coupling
 - fully gauge invariant effective theory, Ward identities are fulfilled
- renormalise analoguous to QED
 - on-shell
 - G_F renormalised in short distance picture
 - \rightarrow match to muon decay Rev.Mod.Phys.50 (1978) 573
 - long distance corrections need to be matched to short distance corrections

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
		R	ev.Mod.Phys.50 (1978) 573
SD result -	full EW SM		

- full SM corrections $\mathcal{O}(\alpha_{\text{QED}}^4)$ for partonic process
- needs an infrared cut-off $\Lambda \ll m_W$ at hadronic scale
- photon receives mass Λ

 \rightarrow no real emissions if $\Lambda \geq \frac{1}{2}m_B$

$$\mathcal{M}^1_{0,SD} = \frac{\alpha}{\pi} \ln \frac{m_Z^2}{\Lambda^2} \, \mathcal{M}^0_0$$

LD result – pheno-LO \otimes QED

• $m_{\gamma} = 0 \rightarrow$ real and virtual emissions

- effective vertex may emit photons (gauge invariance)
- UV-regularisation using Pauli-Villars method

 → introduce heavy unphysical photon of mass M with negative propagator sign
- set $M=\Lambda$ to match to SD results

$$\Gamma_{\text{measured}} = \eta_{\text{QCD}}^2 \eta_{\text{QED}}^2 |V_{xb}|^2 \Gamma_{\text{Born}}'$$

$$\eta_{\text{QED}}^2 = 1 + \delta_{\text{QED}}^{SD} + \delta_{\text{QED}}^{LD} = \frac{\Gamma \left[\mathcal{O}(\alpha G_F^2) \right]}{\Gamma \left[\mathcal{O}(G_F^2) \right]}$$

	$1+\delta^{LD}_{\rm QED}$	stat. error	$\eta_{\rm QED}$	error
$B^0 \to D^{\mp} e^{\pm} \nu_e$	1.00817	0.00025	1.0110	0.001
$B^0 \to D^{\mp} \mu^{\pm} \nu_e$	1.00757	0.00023	1.0108	0.001
$B^{\pm} \rightarrow D^0 e^{\pm} \nu_e$	0.99679	0.00023	1.0054	0.0005
$B^{\pm} \to D^0 \mu^{\pm} \nu_e$	0.99633	0.00021	1.0052	0.0005
$B^0 \to \pi^{\mp} e^{\pm} \nu_e$	1.04476	0.00079	1.0290	0.002
$B^0 \to \pi^{\mp} \mu^{\pm} \nu_e$	1.04544	0.00081	1.0292	0.002
$B^{\pm} \to \pi^0 e^{\pm} \nu_e$	0.99718	0.00046	1.0055	0.001
$B^{\pm} \to \pi^0 \mu^{\pm} \nu_e$	0.99598	0.00048	1.0049	0.001

 $\rightarrow~\mathrm{QED}$ breaks isospin symmetry

Marek Schönherr

IKTP TU Dresden

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
		Annals Phys.13(1961)379-452;	JHEP12(2008)018

Resummation Effects – YFS-scheme

- resummation of soft limit $(k \rightarrow 0)$
- separation of soft limit of real and virtual amplitudes \rightarrow YFS form factor $\exp[Y(\Omega)]$
- reorganisation of perturbative series \rightarrow series in e with infrared divergent amplitudes into series in α with infrared subtracted squared amplitudes

$$\mathcal{M}_{0}^{0} + \mathcal{M}_{1}^{\frac{1}{2}} + \mathcal{M}_{0}^{1} + \dots \Big|^{2}$$

= $e^{Y(\Omega)} \prod_{0}^{i} \tilde{S}(k_{i}, \Omega) \left(\tilde{\beta}_{0}^{0} + \tilde{\beta}_{0}^{1} + \sum_{i} \frac{\tilde{\beta}_{1}^{1}(k_{i})}{\tilde{S}(k_{i})} + \dots \right)$

• improved predictions

Marek Schönherr

Differential distributions – $B^0 \rightarrow D^- e^+ \nu_e$

Marek Schönherr

IKTP TU Dresden

Origin of differences – $B^0 \rightarrow D^- e^+ \nu_e$

Marek Schönherr

IKTP TU Dresden

Origin of differences – $B^0 \rightarrow D^- e^+ \nu_e$

Marek Schönherr

IKTP TU Dresden

- corrections and smaller uncertanties to correction factor $\eta_{\rm QED}$ in V_{xb}
- some phase space regions receive much larger corrections \rightarrow can only be adequately described using both fixed order ME and resummation
- quantify systematic uncertanties due to matching of SD and LD
- TODO: implement integration using YFS-improved calculation

Motivation – V_{xb} , etc.	Methods	Results	Conclusion
Appendix			

Phenomenological LO decay – $\mathcal{O}(G_F)$

 $\begin{array}{rcl} \mathsf{FS \ scalar} & \langle X|V^{\mu}|B\rangle &=& f_{+}(t)(p_{B}+p_{X})^{\mu}+f_{-}(t)(p_{B}-p_{X})^{\mu}\\ & \langle X|A^{\mu}|B\rangle &=& 0\\ \mathsf{FS \ vector} & \langle X|V^{\mu}|B\rangle &=& 2ig(t)\epsilon^{\mu\nu\rho\sigma}\varepsilon_{\nu}^{*}p_{B\rho}p_{X\sigma}\\ & \langle X|A^{\mu}|B\rangle &=& f(t)\varepsilon^{\mu*}+a_{+}(t)(p_{B}+p_{X})^{\mu}(p_{B}-p_{X})^{\nu}\varepsilon_{\nu}^{*}\\ & & +a_{-}(t)(p_{B}-p_{X})^{\mu}(p_{B}+p_{X})^{\nu}\varepsilon_{\nu}^{*} \end{array}$

Marek Schönherr

Advantages over LL Factorization

		phen. model	Photos
V	t dependency in FF	approximate	none
V	corrections on kinematics	yes	none
V	vertex emission	yes	none
V	contribution to decay rate	yes	none
R	t dependency in FF	yes	none
R	full photon emission coupling	yes	resummed soft limit
R	vertex emission	yes	none
R	parton level emission	none	none
R	emission ration at first order	yes	approximate
RV	total rate change	yes/no	none

Marek Schönherr