Estimating TUNING UNCERTAINTIES WITH

PROFESSOR

Holger Schulz, Heiko Lacker, Jan Eike von Seggern (HU Berlin), Andy Buckley (Edinburgh), Hendrik Hoeth (Durham)

CERN, January 13, 2010

OvERSAMPLING AND INTERPOLATION QUALITY

- In n dimensions: Singular Value Decomposition (SVD) requires $N_{\text {min }}^{(n)}$ generator runs:

$$
N_{\min }^{(n)}=1+n+n(n+1) / 2+\underbrace{(n+1)(n+2) / 6}_{\text {cubic only }}
$$

- SVD allows for oversampling.
- Degree of oversampling: $D=N_{\text {runs }} / N_{\text {min }}^{(n)}$
- What is a sensible D ?
- \rightarrow use $\mathcal{O}(1000)$ different interpolations with different $N_{\text {runs }}$
- Perform minimisations, investigate g.o.f. measures
- Examples shown are from a two-dimensional Tuning of Jimmy

Distribution of Goodness of Fit values

- Spread of results decreases with increasing D, polynomial degree
- Observe lower $\chi^{2} / N_{\mathrm{df}}$-boundary

Goodness of Fit vs. Degree of oversampling

- Oversampling is neccesary, $D>2 \ldots 3$ seems sensible
- Hower, g.o.f. improves slowly for $D>4$, almost saturates

Tuning uncertainties (work in Progress)

Goal: establish a robust estimate of tuning uncertainties (confidence-belt) We currently study two different sources of tuning uncertainties:

- Statistical uncertainties \rightarrow exploit covariance matrix returned by minimiser (inspired by NNPDF approach)

- Intrinsic systematics of the

Professor method: freedom when parameterising generator response \rightarrow many minimisation results

CONFIDENCE BELT CONSTRUCTION

(1) Use points sampled from ellipsis or different minimisation results
(2) Use parameterisation to get bin-content predictions
(3) For each bin b and each observable \mathcal{O} : determine central 68,95 pct.

Confidence belt - WITHOUT PSEUDODATA

statistical uncertainties

Confidence belt - AdDing Pseudodata

statistical uncertainties

Underlying event plateau. .

Transverse region charged particle density

Transverse region charged particle density: mean of plateau

SUMMARY

- We studied how the interpolation benefits from oversampling
- $N_{\text {runs }} / N_{\text {min }}^{(n)}>2 \ldots 3$ is advisable
- Working on quantification of tuning uncertainties
- Statistical uncertainty estimate shows expected behaviour
- More work, especially on systematic uncertainty estimate needed

Thank you!

Backup

2nd order polynomial includes lowest-order correlations between parameters

$$
M C_{b}(\vec{p}) \approx f^{(b)}(\vec{p})=\alpha_{0}^{(b)}+\sum_{i} \beta_{i}^{(b)} p_{i}^{\prime}+\sum_{i \leq j} \gamma_{i j}^{(b)} p_{i}^{\prime} p_{j}^{\prime}
$$

Now use N generator runs, i.e. N different parameter sets x, y :

Therefore: $\vec{c}_{b}=\tilde{\mathcal{I}}[\tilde{\mathbf{P}}] \vec{v}$ where $\tilde{\mathcal{I}}$ is the pseudoinverse operator.

$$
\vec{c}_{b}=\tilde{\mathcal{I}}[\tilde{\mathbf{P}}] \vec{v}
$$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M: M=U \Sigma V^{*}$
- Method available in SciPy.linalg
- Minimal number of runs $=$ number of coefficients in \vec{c}_{b} :

$$
N_{\min }^{(n)}=1+n+n(n+1) / 2
$$

cubic only

Num params, P	$N_{2}^{(P)}$ (2nd order)	$N_{3}^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220

$$
\vec{c}_{b}=\tilde{\mathcal{I}}[\tilde{\boldsymbol{P}}] \vec{v}
$$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M: M=U \Sigma V^{*}$
- Method available in SciPy.linalg
- Minimal number of runs $=$ number of coefficients in \vec{c}_{b} :

$$
N_{\min }^{(n)}=1+n+n(n+1) / 2+\underbrace{(n+1)(n+2) / 6}_{\text {cubic only }}
$$

Num params, P	$N_{2}^{(P)}$ (2nd order)	$N_{3}^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220

$$
\vec{c}_{b}=\tilde{\mathcal{I}}[\tilde{\boldsymbol{P}}] \vec{v}
$$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M: M=U \Sigma V^{*}$
- Method available in SciPy.linalg
- Minimal number of runs $=$ number of coefficients in \vec{c}_{b} :

$$
N_{\min }^{(n)}=1+n+n(n+1) / 2+\underbrace{(n+1)(n+2) / 6}_{\text {cubic only }}
$$

- Oversampling by a factor of three has proven to be much better

Num params, P	$N_{2}^{(P)}$ (2nd order)	$N_{3}^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220

