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Oversampling and interpolation quality

In n dimensions: Singular Value Decomposition (SVD) requires N
(n)

min

generator runs:

N
(n)

min = 1 + n + n(n + 1)/2 + (n + 1)(n + 2)/6︸ ︷︷ ︸
cubic only

SVD allows for oversampling.

Degree of oversampling: D = Nruns/N
(n)

min

What is a sensible D?

→ use O(1000) different interpolations with different Nruns

Perform minimisations, investigate g.o.f. measures

Examples shown are from a two-dimensional Tuning of Jimmy
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Distribution of Goodness of Fit values

Spread of results decreases with increasing D, polynomial degree

Observe lower χ2/Ndf-boundary

Quad. Nruns = 12 (D = 2)
Quad. Nruns = 18 (D = 3)
Cubic Nruns = 20 (D = 2)
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Goodness of Fit vs. degree of oversampling

Oversampling is neccesary, D > 2 . . . 3 seems sensible

Hower, g.o.f. improves slowly for D > 4, almost saturates

Quadratic (Nmin = 6)

Cubic (Nmin = 10)
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Tuning uncertainties (work in progress)

Goal: establish a robust estimate of tuning uncertainties (confidence-belt)

We currently study two different sources of tuning uncertainties:

Statistical uncertainties → exploit

covariance matrix returned by

minimiser (inspired by NNPDF

approach)

Intrinsic systematics of the

Professor method: freedom when

parameterising generator response

→ many minimisation results
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Confidence belt construction

1 Use points sampled from ellipsis or different minimisation results

2 Use parameterisation to get bin-content predictions

3 For each bin b and each observable O: determine central 68, 95 pct.
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Confidence belt - without pseudodata
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Confidence belt - adding pseudodata

statistical uncertainties “systematic” uncertainties
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Underlying event plateau. . .
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. . . its mean evolving with
√

s

CL=95%

10 3 10 4
0

0.5

1

1.5

2

Transverse region charged particle density: mean of plateau

√
s / GeV

〈〈N
ch
/
d

η
d

φ
〉〉

Holger Schulz Tuning uncertainties with Professor 9 / 10



Summary

We studied how the interpolation benefits from oversampling

Nruns/N
(n)

min > 2 . . . 3 is advisable

Working on quantification of tuning uncertainties

Statistical uncertainty estimate shows expected behaviour

More work, especially on systematic uncertainty estimate needed

Thank you!
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Backup



2nd order polynomial includes lowest-order correlations between parameters

MCb(~p ) ≈ f (b)(~p ) = α
(b)
0 + ∑

i

β
(b)
i p′i + ∑

i≤j

γ
(b)
ij p′i p

′
j

Now use N generator runs, i.e. N different parameter sets x,y:


v1

v2

...

vN


︸ ︷︷ ︸

~v (N values, i.e. N bin contents)

=


1 x1 y1 x2

1 x1y1 y2
1

1 x2 y2 x2
2 x2y2 y2

2
...

1 xN yN x2
N xNyN y2

N


︸ ︷︷ ︸

P̃ (N sampled parameter sets)



α0

βx

βy

γxx

γxy

γyy


︸ ︷︷ ︸
~c (coeffs)

Therefore: ~cb = Ĩ [P̃]~v where Ĩ is the pseudoinverse operator.



~cb = Ĩ [P̃]~v

Use Singular Value Decomposition (SVD), a general diagonalisation

for all normal matrices M:M = UΣV ∗

Method available in SciPy.linalg

Minimal number of runs = number of coefficients in ~cb:

N
(n)

min = 1 + n + n(n + 1)/2 + (n + 1)(n + 2)/6︸ ︷︷ ︸
cubic only

Oversampling by a factor of three has proven to be much better

Num params, P N
(P)
2 (2nd order) N

(P)
3 (3rd order)

1 3 4

2 6 10

4 15 35

6 28 84

8 45 165

9 55 220

10 66 286
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