Theoretical analysis of data on soft diffraction dissociation

Martin Poghosyan
Torino University/INFN

Based on:
A.B. Kaidalov and M.P.

Description of soft diffraction in the framework of reggeon calculus: Predictions for LHC. arXiv:0909.5156
Spectra of particles produced in high-mass diffraction dissociation in the Model of QuarkGluon Strings. arXiv:0910.1558
Predictions of Quark-Gluon String Model for pp at LHC. arXiv:0910.2050
Theoretical analysis of UA5 published data on general characteristics of pbarp collisions at $\sqrt{V}=900 \mathrm{GeV}$. to be published

MC4LHC readiness
29 March - 1 April 2010
CERN, Geneva

Regge pole exchange diagrams for SD and DD

The process of soft diffraction dissociation is closely related to small angle elastic scattering:

$$
h_{1}+h_{2} \rightarrow h_{1}+X_{2}, \quad h_{1}+h_{2} \rightarrow X_{1}+h_{2}, \quad h_{1}+h_{2} \rightarrow X_{1}+X_{2},
$$

each of the incoming hadrons may become a system which will then decay into a number of stable final state particles.

In hadronic interactions diffractive processes play an important role. Densities of particles in these processes are rather small in the central rapidity region, but their cross-sections are not negligible, and these effects must be taken into account in the calculation of characteristics of secondary particles. In addition to this, production of particles in high-mass diffraction dissociation has its own interest, because it contains the physics of fragmentation of highmass systems.

"Elastic" amplitudes for large-mass SD and DD

Triple-Regge description is in good agreement with the FNAL and ISR data for soft diffraction dissociation. However,

1. higher-energy data from SPS and Tevatron do not show a fast increase of the cross-section with energy as expected from the fits. As far as Tevatron energy is concerned, the predicted value for the single diffraction cross-section is larger than the measured total cross-section.
2. It is not possible to have a unified description of SD and DD data.
3. Triple-pomeron diagram violates unitarity which requires that the total cross section at very high energies should not grow faster than $\ln ^{2} s$ (Froissart bound).

A model for describing high-mass diffractive dissociation.

Dressed triple-Reggeon and loop diagrams

where

π-exchange is taken onto account based on OPER model

Secondary Rggeons

$$
\alpha_{i}(t)=\alpha_{i}(0)+\alpha_{i}^{\prime} \cdot t, \quad i=f, \rho, \omega .
$$

$$
\alpha_{f}(0)=0.703 \pm 0.023
$$

$$
\alpha_{f}^{\prime}=0.797 \pm 0.014 G e V^{-2}
$$

$$
\alpha_{\rho}(0)=0.522 \pm 0.009
$$

$$
\alpha_{\rho}^{\prime}=0.809 \pm 0.015 G e V^{-2}
$$

$$
\alpha_{\omega}(0)=0.435 \pm 0.033
$$

$$
\alpha_{\omega}^{\prime}=0.923 \pm 0.054 G e V^{-2}
$$

Fit to data on $p p$ and $p \bar{p}$ total and elastic cross-section

Fit to data on single diffraction dissociation

Data from Fermilab; Schamberger et al., Phys. Rev. D17

Fit to data on single diffraction dissociation

Data from Fermilab; Schamberger et al., Phys. Rev. D17

Fit to data on single diffraction dissociation

ISR data, Armitage et al. NP B194

Fit to data on single diffraction dissociation

Fit to data on single diffraction dissociation

Fit to data on single diffraction dissociation

Fit to data on single diffraction dissociation

Data from Fermilab (fixed t)

Akimov et al. PRL 39

Cool et al. PRL 47

Goulianos, Montanha PR D59

Integrated SD and DD cross-sectoion

UA5 measurement

Two large streamer chambers were placed above and below the SpbarpS beam pipe. The chambers were triggered by requiring one or more hits in scintillation counter hodoscopes at each end of the chambers covering $2<|\eta|<5.6$.

Two triggers were taken in parallel: a " 2 -arm" trigger requiring hits at both ends to select mainly non single-diffractive events, and a "1-arm" trigger demanding a hit in only one arm to select highly asymmetric events such as single diffractive events.

$$
\begin{aligned}
\sigma_{1} & =\epsilon_{1}^{S D} \sigma_{S D}+\epsilon_{1}^{N S D} \sigma_{N S D} \\
\sigma_{2}= & \epsilon_{2}^{S D} \sigma_{S D}+\epsilon_{2}^{N S D} \sigma_{N S D} \\
& \frac{\sigma_{S D}}{\sigma_{N S D}}=\frac{r \cdot \epsilon_{2}^{N S D}-\epsilon_{1}^{N S D}}{\epsilon_{1}^{S D}-r \cdot \epsilon_{2}^{S D}} . \quad \text { where } \quad r \equiv \sigma_{1} / \sigma_{2}
\end{aligned}
$$

$$
\text { measured: } \frac{\sigma_{\text {inel }}^{900}}{\sigma_{\text {inel }}^{200}}, \frac{\sigma_{S D}^{200}}{\sigma_{N S D}^{200}}, \frac{\sigma_{S D}^{900}}{\sigma_{N S D}^{900}} \text { assuming: } \frac{\sigma_{S D}}{d M^{2}} \sim \frac{1}{M^{2}}
$$

UA5 data

At $V_{s}=900 \mathrm{GeV}$ single-diffractive interactions UA5 triggers were not able to register particles produced from diffracted systems with masses below $2.5 \mathrm{GeV} / \mathrm{c}^{2}$.

$$
\sigma_{S D}=1.19 \cdot \sigma_{S D}^{H M} \text { at } 900 \mathrm{GeV} \quad\left[\frac{\ln \left(0.05 s / 1.08^{2}\right)}{\ln \left(0.05 s / 2.5^{2}\right)}=1.19\right]
$$

Inclusive cross section (QGSM)

Production of 2 chains of hadrons on the base of protons' valence quarks.

Production of 2 n chains of hadrons. Extra chains are due to sea quarks (or gluons).

$$
x_{c E} \frac{d \sigma_{c}}{d x_{c}}=\sum_{k=0}^{\infty} \sigma_{k}\left\{f_{q}^{c, k}\left(x_{+}\right) f_{q q}^{c, k}\left(x_{-}\right)+f_{q}^{c, k}\left(x_{-}\right) f_{q q}^{c, k}\left(x_{+}\right)+2(k-1) f_{q_{s e a}}^{c, k}\left(x_{-}\right) f_{\bar{q}_{s e a}}^{c, k}\left(x_{+}\right)\right\}
$$

$$
\begin{aligned}
& x_{ \pm}=1 / 2 d \sqrt{x_{\perp}^{2}+x^{2}} \pm x . \\
& x_{\perp}=2 \overline{m_{\perp}^{c}} / \sqrt{s} .
\end{aligned}
$$

$$
\begin{aligned}
& f_{i}^{c, k}(x)=\int_{x}^{1} u_{i}^{k}\left(x_{1}\right) G_{i}^{c}\left(\frac{x}{x_{1}}\right) d x_{1}, \quad i=q, q q, q_{\text {sea }}
\end{aligned} \begin{aligned}
& G_{u}^{\pi^{+}}(z)=a_{\pi}(1-z)^{-\alpha_{R}(0)+\lambda} \\
& G_{u u}^{\pi^{+}}(z)=a_{\pi}(1-z)^{\alpha_{R}(0)-2 \alpha_{N}(0)+\lambda} \\
& \begin{array}{l}
\text { distribution } \\
\text { of (di)quarks }
\end{array} \\
& \begin{array}{l}
\text { fragmentation } \\
\text { functions }
\end{array}
\end{aligned} \begin{array}{ll}
G_{u}^{-}(z)=a_{K}(1-z)^{-\alpha_{\phi}(0)+\lambda+2\left(1-\alpha_{R}(0)\right)} & \begin{array}{l}
a_{\pi^{+}}=a_{\pi^{-}}=a_{\pi^{0}} \equiv a_{\pi} \\
a_{K^{+}}=a_{K^{-}}
\end{array} \\
& a_{K^{0}}=a_{\bar{K}^{0}} \equiv a_{K}
\end{array}
$$

$$
\begin{aligned}
& u_{q}^{p, 1}= \begin{cases}c_{1} x^{-\alpha_{R}(0)}, & x \rightarrow 0 \\
c_{2}(1-x)^{\alpha_{R(0)}-2 \alpha_{N}(0)}, & x \rightarrow 1\end{cases} \\
& u_{q}^{p, 1}=C x^{-\alpha_{R}(0)}(1-x)^{\alpha_{R(0)}-2 \alpha_{N}(0)}
\end{aligned}
$$

A.B. Kaidalov, Phys. Lett. B166, 459.
A.B. Kaidalov, K.A. Ter-Martirosyan, Sov. J. Nucl. Phys. 39, 979; 40, 135; 45, 902, Phys. Lett. B117, 459.
A.B. Kaidalov, O.I. Piskunova, Z. Phys. C30, 145; Sov. J. Nucl. Phys. 41, 816.

Meson production

Baryon production

$\left\langle p_{i}>\right.$ as a function of $\sqrt{ } s$

For each energy or diffractive-mass and for each particle type we calculate p_{t} using these parameterizations

$\mathrm{d} N_{c h} / \mathrm{d} \eta$ as a function of η and ${ }^{\mathrm{s}}$ for NSD events

Description of data on charged particles pseudorapidity distribution in ppbar NSD events (Not a fit and there is no fit anymore).

Multiplicity distributions

Description of UA5 data on charged particles multiplicity distribution in ppbar NSD events.

Spectra of particles produced in high-mass diffraction dissociation

The system of hadrons, produced in diffraction dissociation of a hadron can be considered as a non-diffractive interaction of a hadron with the qqbar system which is responsible for inelastic interaction of reggeons and/or pomerons.

$\mathrm{N}_{\mathrm{ch}} / \mathrm{d} \eta$ in $\mathbf{S D}$ events (1/2)

Description of UA4 data on charged particles pseudorapidty distribution in ppbar single-diffractive evens at $\sqrt{s}=546 \mathrm{GeV}$ for different values of the diffractive mass.

$\mathrm{N}_{\mathrm{ch}} / \mathrm{d} \eta$ for SD events (2/2)

Description of UA5 data on charged particles pseudorapidity distribution in ppbar singlediffractive events. The indicated errors are statistical and the systematical errors are unknown.

Integrated over all masses ($M^{2} / s \leq 0.05$)

$\mathrm{d} N_{c h} / \mathrm{d} \eta$ as a function of η and V_{s} for Inelastic events

Description of data UA5 on charged particles pseudorapidity distribution in ppbar Inelastic events.

On self-consistency/inconsistency of UA5 data

The definition of Inelastic used by UA5 is not clear. There seems to be inconsistence. Do not fit your favorite model to UA5 data, otherwise you may find that pp and ppbar are different at 900 GeV .

Our predictions for LHC.

Cross-sections

$V_{\mathrm{s} \mathrm{TeV}}$	$\sigma_{\text {tot }} m b$	$\sigma_{e l} m b$	$B \mathrm{GeV}^{-2}$	$\sigma_{S D}\left(M^{2} / s<0.05\right) m b$	$\sigma_{D D}(\Delta \eta>3) m b$
0.9	66.8	14.6	15.4	9.3	5.7
2.36	79.5	18.8	17	10.9	5.9
7	96.4	24.8	19	13.	6.1
10	102	27	19.8	13.7	6.2
14	108	29.5	20.5	14.3	6.4

$$
<N^{c h}>
$$

$V_{\mathrm{s} \mathrm{TeV}}$	$\|\boldsymbol{\eta}\|<1$			$\|\eta\|<2.5$			Full PS		
	SD	NSD	Inel	SD	NSD	Inel	SD	NSD	INEL
0.9	1	7.1	6.3	2.6	18	16	7.8	35.8	31.4
2.36	1.1	8.8	7.5	2.8	22.5	19.3	8.8	50.	43.3
7	1.3	10.1	8.9	3.4	25.7	22.6	12	64.9	56.3
10	1.34	10.7	9.4	3.5	27.1	23.8	12.7	71.3	61.7
14	1.4	11.2	9.8	3.6	28.5	25	13.5	77.4	67

$\left(d N^{c h} / d \eta\right)_{\eta=0}$

$V_{\text {s TeV }}$	SD	NSD	Inel
0.9	0.4	3.5	3.
2.36	0.44	4.1	3.5
7	0.5	4.9	4.2
10	0.53	5.2	4.5
14	0.6	5.5	4.7

Summary

We propose to describe soft single- and double- diffractive processes based on diagrams, where all possible eikonal-type corrections are taken into account in triple-reggeon and loop diagrams. This approach allows to describe data on diffractive pp and ppbar differential cross-sections in a wide energy range (from $P_{\text {lab }}=65 \mathrm{GeV} / \mathrm{c}$ to $V_{\mathrm{s}}=1800 \mathrm{GeV}$) accessible by different accelerators of CERN and Fermilab.

Incorporating this model with the Model of Quark-Gluon Strings, a good description of available SppS data on particles spectra in ppbar single-diffractive dissociation process is obtained in a parameter-free way.

At $V_{s}=900 \mathrm{GeV}$ pbarp single-diffractive interactions UA5 triggers were not able to register particles produced from diffracted systems with masses below $2.5 \mathrm{GeV} / c^{2}$. For correcting inelastic and single-diffractive cross-sections for this low-mass diffraction region UA5 used $d \sigma / d M^{2} \sim 1 / M^{2}$ simple parameterization which resulted to underestimation of inelastic and single-diffraction dissociation cross-sections by $2 \div 3 \mathrm{mb}$.

From an analysis of UA5 data for charged particles pseudorapidity distributions in singlediffractive, non-single diffractive and inelastic events we conclude that UA5 data are not self-consistent.

Appendix

(MC generators)

900 GeV

UA5

$\frac{\sigma_{S D}\left(2.5^{2}<M^{2}<0.05 s\right)}{\sigma_{N S D}}=0.151$ (the error bar needs to be evaluated correctly .
predictions of MC generators

pythia	phojet	
0.187	0.159	MC labels
0.191	0.198	Hadron level definition
	0.163	MC labels and no CD
	0.177	Hadron level definition and no CD

1800 GeV

$$
\frac{\sigma_{S D}\left(1.4<M^{2}<0.05 s\right)}{\sigma_{\text {inel }}}=0.16 \quad \text { (Tevatron) }
$$

predictions of MC generators

pythia phojet
0.173 0.133 MC labels 0.176 0.161 Hadron level definition 0.135 MC labels and no CD 0.147 Hadron level definition and no CD

1800 GeV

$$
\frac{\sigma_{S D}\left(2<M^{2}<0.05 s\right)}{\sigma_{\text {inel }}}=0.158 \pm 0.024 \text { (Tevatron) }
$$

predictions of MC generators

pythia phojet
0.168 0.131 MC labels 0.171 0.159 Hadron level definition 0.133 MC labels and no CD 0.145 Hadron level definition and no CD

900 GeV

Pythia phojet

$$
\frac{\sigma_{S D}\left(M^{2}<2.5^{2}\right)}{\sigma_{S D}\left(2.5^{2}<M^{2}<0.05 s\right)}
$$

0.256
0.134

1800 GeV

Pythia phojet

$$
\frac{\sigma_{S D}\left(M^{2}<1.4\right)}{\sigma_{S D}\left(1.4<M^{2}<0.05 s\right)}
$$

$$
\frac{\sigma_{S D}\left(M^{2}<2\right)}{\sigma_{S D}\left(2<M^{2}<0.05 s\right)}
$$

$0.095 \quad 0.044$

