W+3 jet production

— signal or background —

Giulia Zanderighi

Oxford Theoretical Physics & STFC

In collaboration with Keith Ellis and Kirill Melnikov

Cern, 1st April 2010

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 for reasonable changes in scales

	W^{\pm}, TeV	W^+ , LHC	W^- , LHC
σ [pb], $\mu = 40$ GeV	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
σ [pb], $\mu = 80 \text{ GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
σ [pb], $\mu = 160 \text{ GeV}$	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 for reasonable changes in scales

	W^{\pm}, TeV	W^+ , LHC	W^- , LHC
σ [pb], $\mu = 40 \text{ GeV}$	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
σ [pb], $\mu = 80 \text{ GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
σ [pb], $\mu = 160~{\rm GeV}$	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

- II. CDF data for W + n jets with n=1,2 is described exceptionally well by NLO QCD
 - \Rightarrow verify this for 3 and more jets

III.W/Z + 3 jets of interest at the LHC, as one of the backgrounds to model-independent new physics searches using jets + MET

III.W/Z + 3 jets of interest at the LHC, as one of the backgrounds to model-independent new physics searches using jets + MET

IV. Calculation highly non-trivial optimal testing ground

$$0 \to \bar{u} \, d \, g \, g \, g \, W^+ \quad \square$$

1203 +104 Feynman diagrams

 $0 \rightarrow \bar{u} \, d \, \bar{Q} \, Q \, g \, W^+$ **258 + 18 Feynman diagrams**

Generalized unitarity

I will not explain the method. I will concentrate on applications & recent results

References:

- Ellis, Giele, Kunszt '07
- Giele, Kunszt, Melnikov '08
- Giele & GZ '08
- Ellis, Giele, Melnikov, Kunszt '08
- Ellis, Giele, Melnikov, Kunszt, GZ '08
- Ellis, Melnikov, GZ '09, Melnikov & GZ '09

These papers heavily rely on previous work

- Bern, Dixon, Kosower '94
- Ossola, Pittau, Papadopoulos '06
- Britto, Cachazo, Feng '04

- [....]

[Unitarity in D=4] [Unitarity in D≠4] [All one-loop N-gluon amplitudes] [Massive fermions, ttggg amplitudes] [W+5p one-loop amplitudes] [W+3 jets]

[Unitarity, oneloop from trees] [OPP] [Generalized cuts]

The F90 Rocket program

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola Recursive unitarity calculation of one-loop amplitudes

The F90 Rocket program

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola Recursive unitarity calculation of one-loop amplitudes

On a more general side, the current version of Rocket computes one-loop amplitudes for So far computed one-loop <u>introported one-loop amplitudes</u> $\bar{q}qW+n$ gluons and $0 \rightarrow \bar{q}q\bar{Q}QW+1$ gluon. It is straightforward to extend the program to include similar processes with the Z boson $\sqrt{N-g|uons}$ cesses with massive quarks $0 \rightarrow \bar{t}t + n$ glu $\sqrt{qq} + \stackrel{o}{N-g|uons}$ indicates that the developm $\sqrt{qq} + QQ + W$ $\sqrt{tt} + N-g|uons$ $\sqrt{tt} + qq + N-g|uons$ [Schulze]

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) d\sigma_{LO}^{FC}(\mu, p)}{\int \mathcal{O}(p) d\sigma_{LO}^{LC}(\mu, p)}$$

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) d\sigma_{LO}^{FC}(\mu, p)}{\int \mathcal{O}(p) d\sigma_{LO}^{LC}(\mu, p)}$$

This turns out to be very stable, independent of factorization/renormalization and on the observable (e.g. bin of distribution)

$$\mathcal{R}_{\mathcal{O}}(\mu) \Rightarrow r$$

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) \mathrm{d}\sigma_{LO}^{\mathrm{FC}}(\mu, p)}{\int \mathcal{O}(p) \mathrm{d}\sigma_{LO}^{\mathrm{LC}}(\mu, p)}$$

This turns out to be very stable, independent of factorization/renormalization and on the observable (e.g. bin of distribution)

$$\mathcal{R}_{\mathcal{O}}(\mu) \Rightarrow r$$

Define our best approximation to the NLO result as

$$\mathcal{O}^{\mathrm{NLO}} = r \cdot \mathcal{O}^{\mathrm{NLO,LC}}$$

Leading color adjustment tested in W+1, W+2 jets and W+3 jets: always OK to 3 %

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) \mathrm{d}\sigma_{LO}^{\mathrm{FC}}(\mu, p)}{\int \mathcal{O}(p) \mathrm{d}\sigma_{LO}^{\mathrm{LC}}(\mu, p)}$$

This turns out to be very stable, independent of factorization/renormalization and on the observable (e.g. bin of distribution)

$$\mathcal{R}_{\mathcal{O}}(\mu) \Rightarrow r$$

Define our best approximation to the NLO result as

$$\mathcal{O}^{\mathrm{NLO}} = r \cdot \mathcal{O}^{\mathrm{NLO,LC}}$$

Leading color adjustment tested in W+1, W+2 jets and W+3 jets: always OK to 3 %

Other O(1%) effects neglected:

- CKM set to unity $\Rightarrow \sim -1\%$
- W treated onshell $\Rightarrow \sim +1\%$

CDF cuts

$$p_{\perp,j} > 20 \text{GeV} \qquad p_{\perp,e} > 20 \text{GeV} \qquad E_{\perp,\text{miss}} > 30 \text{GeV}$$
$$|\eta_e| < 1.1 \qquad M_{\perp,W} > 20 \text{GeV}$$
$$\mu_0 = \sqrt{p_{\perp,W}^2 + M_W^2} \qquad \mu = \mu_R = \mu_F = [\mu_0/2, 2\mu_0]$$

- PDFs: cteq611 and cteq6m
- CDF applies lepton-isolation cuts. This is a O(10%) effect. Leptonisolation has been corrected for (would not have been needed ...) No lepton isolation applied
- CDF uses JETCLU with R = 0.4, but this is not infrared safe, use a different jet-algorithm

Jet-algorithms

- CDF uses JETCLU which is not infrared safe
- NLO calculation with JETCLU not possible
- use e.g. SISCone and anti-kt algorithm which are IR safe
- can compare Leading order results for these algorithm (even if meaning of LO for JETCLU is questionable ...)

Leading order:

Algorithm	R	$E_{\perp}^{\rm jet} > 20 {\rm ~GeV}$	$E_{\perp}^{3 \mathrm{rdjet}} > 25 \mathrm{~GeV}$
JETCLU	0.4	$1.845(2)^{+1.101(3)}_{-0.634(2)}$	$1.008(1)^{+0.614(2)}_{-0.352(1)}$
SIScone	0.4	$1.470(1)^{+0.765(1)}_{-0.560(1)}$	$0.805(1)^{+0.493(1)}_{-0.281(1)}$
anti- k_{\perp}	0.4	$1.850(1)^{+1.105(1)}_{-0.638(1)}$	$1.010(1)^{+0.619(1)}_{-0.351(1)}$

SIScone: Salam & Soyez '07; anti-kt: Cacciari, Salam, Soyez '08

At LO anti-kt R =0.4 is closer to JETCLU

<u>Moral:</u>

precision comparison with theory require that experiments use IR-safe algorithms

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

CDF

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

CDF

	LO ^{LC}	LO ^{FC}			
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81_{-0.28}^{+0.50}$			
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01_{-0.35}^{+0.62}$			

 $\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$		
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81\substack{+0.50 \\ -0.28}$	0.91		
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91		

 $\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}		
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81_{-0.28}^{+0.50}$	0.91	$1.01\substack{+0.05 \\ -0.17}$		
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10^{+0.01}_{-0.13}$		

 $\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ∙NLO ^{LC}	
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81_{-0.28}^{+0.50}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10^{+0.01}_{-0.13}$	$1.00\substack{+0.01\\-0.12}$	

 $\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ∙NLO ^{LC}	Berger et al. (LC)	
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81\substack{+0.50 \\ -0.28}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	$0.908^{+0.044}_{-0.142}$	
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10^{+0.01}_{-0.13}$	$1.00\substack{+0.01 \\ -0.12}$		

 $\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ∙NLO ^{LC}	Berger et al. (LC)	Berger et al. (FC)
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81\substack{+0.50 \\ -0.28}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10\substack{+0.01\\-0.13}$	$1.00\substack{+0.01\\-0.12}$		

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

CDF

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ∙NLO ^{LC}	Berger et al. (LC)	Berger et al. (FC)
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81\substack{+0.50 \\ -0.28}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$
a-k _t	$1.12^{+0.68}_{-0.39}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10^{+0.01}_{-0.13}$	$1.00^{+0.01}_{-0.12}$		

NB: errors are standard scale variation errors, statistical errors smaller

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

CDF

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ·NLO ^{LC}	Berger et al. (LC)	Berger et al. (FC)
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81\substack{+0.50 \\ -0.28}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01^{+0.62}_{-0.35}$	0.91	$1.10^{+0.01}_{-0.13}$	$1.00^{+0.01}_{-0.12}$		

NB: errors are standard scale variation errors, statistical errors smaller

 \Rightarrow agreement between independent calculations to within 3%

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

CDF

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ·NLO ^{LC}	Berger et al. (LC)	Berger et al. (FC)
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81_{-0.28}^{+0.50}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10\substack{+0.01\\-0.13}$	$1.00^{+0.01}_{-0.12}$		

NB: errors are standard scale variation errors, statistical errors smaller

- \Rightarrow agreement between independent calculations to within 3%
- \Rightarrow leading color approximation works very well. After leading color adjustment procedure it is good to 3%

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

CDF

	LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLO ^{LC}	r ·NLO ^{LC}	Berger et al. (LC)	Berger et al. (FC)
SIS.	$0.89^{+0.55}_{-0.31}$	$0.81_{-0.28}^{+0.50}$	0.91	$1.01\substack{+0.05 \\ -0.17}$	$0.91\substack{+0.05 \\ -0.12}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$
a-k _t	$1.12_{-0.39}^{+0.68}$	$1.01\substack{+0.62\\-0.35}$	0.91	$1.10^{+0.01}_{-0.13}$	$1.00^{+0.01}_{-0.12}$		

NB: errors are standard scale variation errors, statistical errors smaller

- \Rightarrow agreement between independent calculations to within 3%
- \Rightarrow leading color approximation works very well. After leading color adjustment procedure it is good to 3%
- \Rightarrow important (10% or more) differences due to different jet-algorithms. High precision comparison impossible if using different algorithms

Tevatron: sample distribution: E_{t,j3}

<u>NB</u>: CDF ⇒ JetCLU VERSUS NLO Theory ⇒ SISCone

© agreement with CDF data (within currently large errors)

- \odot small K=1.0-1.1, reduced uncertainty: 50% (LO) \rightarrow 10% (NLO)
- \odot first applications of new techniques to $2 \rightarrow 4$ LHC processes

Dual role of SM processes

Dual role of SM processes at colliders

- primary signals (apply signal cuts)
- unwanted background (apply background cuts)

Dual role of SM processes

Dual role of SM processes at colliders

- primary signals (apply signal cuts)
- unwanted background (apply background cuts)

Standard procedure

- study a given process with signal cuts \Rightarrow refine theoretical tools
- once good understanding of the process is achieved with signal cuts (e.g. low pt region) extrapolate to background cuts region (e.g. high pt)

Dual role of SM processes

Dual role of SM processes at colliders

- primary signals (apply signal cuts)
- unwanted background (apply background cuts)

Standard procedure

- study a given process with signal cuts \Rightarrow refine theoretical tools
- once good understanding of the process is achieved with signal cuts (e.g. low pt region) extrapolate to background cuts region (e.g. high pt)

How reliable is this procedure ?

Purpose of background cuts: push into corners of phase-space the SM process, therefore the robustness of the procedure is not assured. NLO QCD predictions for non-trivial processes can shed light on this.

W⁺ + 3 jets at the LHC

In the following: use highly non-trivial NLO calculation of W^++3 jets to illustrate/study this issue

<u>Signal-cut setup (inspired by CMS studies):</u>

$$\begin{split} E_{\rm CM} &= 10 \,{\rm TeV} & E_{\perp,{\rm jet}} = 30 \,{\rm GeV} & E_{\perp,e} = 20 \,{\rm GeV} \\ E_{\perp,{\rm miss}} &= 15 \,{\rm GeV} & M_{\perp,W} = 30 \,{\rm GeV} & |\eta_e| < 2.4 & |\eta_{\rm jet}| < 3 \\ \mu_0 &= \sqrt{p_{\perp,W}^2 + M_W^2} & \mu = \mu_R = \mu_F = [\mu_0/2, 2\mu_0] \\ \end{split}$$
Jets: SIScone with R = 0.5; PDFs: cteq6II/cteq6m

Sample transverse energy distribution

Renormalization and factorization scale set to

$$\mu_0 = \sqrt{p_{T,W}^2 + m_W^2}$$

- with scale μ_0 : considerable change in shape between LO and NLO (extrapolation of LO from low p_t to high p_t would fail badly)
- but origin of the change in shape well understood: at high E_T , μ_0 is smaller than typical scales of the QCD branching \Rightarrow LO overshoots the result

Can one do a more sophisticated LO calculation?

- given a partonic event reconstruct a branching history: cluster partons into jets using k_t-algorithm
- at each branching the scale in the coupling to set to the relative k_t of the daughter partons
- local scale = CKKW scale choice, but no Sudakov reweighting, no parton shower

- given a partonic event reconstruct a branching history: cluster partons into jets using k_t-algorithm
- at each branching the scale in the coupling to set to the relative k_t of the daughter partons
- local scale = CKKW scale choice, but no Sudakov reweighting, no parton shower

- given a partonic event reconstruct a branching history: cluster partons into jets using k_t-algorithm
- at each branching the scale in the coupling to set to the relative k_t of the daughter partons
- local scale = CKKW scale choice, but no Sudakov reweighting, no parton shower

- given a partonic event reconstruct a branching history: cluster partons into jets using k_t-algorithm
- at each branching the scale in the coupling to set to the relative k_t of the daughter partons
- local scale = CKKW scale choice, but no Sudakov reweighting, no parton shower

- given a partonic event reconstruct a branching history: cluster partons into jets using k_t-algorithm
- at each branching the scale in the coupling to set to the relative k_t of the daughter partons
- local scale = CKKW scale choice, but no Sudakov reweighting, no parton shower

- given a partonic event reconstruct a branching history: cluster partons into jets using k_t-algorithm
- at each branching the scale in the coupling to set to the relative kt of the daughter partons
- local scale = CKKW scale choice, but no Sudakov reweighting, no parton shower

- local scale choice reproduces the shape of the NLO distribution well
- the difference between LO with local scale and full Alpgen+Herwig indicative of the importance of the parton shower

<u>SUSY with R-parity</u>: e.g. gluino pair production, each decays into 2 jets and neutralino Typical signature: 4 jets and MET (no lepton)

<u>SUSY with R-parity</u>: e.g. gluino pair production, each decays into 2 jets and neutralino Typical signature: 4 jets and MET (no lepton)

Primary, irreducible background: $Z \rightarrow vv$ + 4 jets

<u>SUSY with R-parity</u>: e.g. gluino pair production, each decays into 2 jets and neutralino Typical signature: 4 jets and MET (no lepton)

Primary, irreducible background: $Z \rightarrow vv \rightarrow 4 jets$

Other SM background is W ($\rightarrow v \tau$ ($\rightarrow \overline{v}$ hadr.)) + 3 jets

<u>SUSY with R-parity</u>: e.g. gluino pair production, each decays into 2 jets and neutralino Typical signature: 4 jets and MET (no lepton)

Primary, irreducible background: $Z \rightarrow vv$ + 4 jets

Other SM background is W ($\rightarrow v \tau$ ($\rightarrow \overline{v}$ hadr.)) + 3 jets

Use peculiar properties of τ -jet to reject W+3jet background but

- I) limited efficiency for identifying τ -decays
- 2) $\sigma(W + 3 j) \sim 100 \sigma(Z + 4j)$

<u>SUSY with R-parity</u>: e.g. gluino pair production, each decays into 2 jets and neutralino Typical signature: 4 jets and MET (no lepton)

Primary, irreducible background: $Z \rightarrow vv$ + 4 jets

Other SM background is $W \rightarrow v \tau \rightarrow \bar{v} \text{ hadr.} + 3 \text{ jets}$

Use peculiar properties of τ -jet to reject W+3jet background but

- I) limited efficiency for identifying τ -decays
- 2) $\sigma(W + 3 j) \sim 100 \sigma(Z + 4j)$

 \Rightarrow important to consider this source of background as well

Atlas setup

Cuts designed by ATLAS to suppress W+3j background

$$\begin{split} p_{T,j} &> 50 \, \text{GeV} \qquad p_{T,j1} > 100 \, \text{GeV} \qquad p_{tl} < 20 \, \text{GeV} \\ E_{\text{T,miss}} &> \max(100 \, \text{GeV}, 0.2 \, H_T) \qquad H_T = \sum_j p_{T,j} + E_{\text{T,miss}} \\ S_T &> 0.2 \qquad |\eta_j| < 3 \end{split}$$

Yamazaki [ATLAS and CMS Col.] 0805.3883 Yamamoto [ATLAS Col.] 0710.3953

Atlas setup

Cuts designed by ATLAS to suppress W+3j background

 $p_{T,j} > 50 \,\text{GeV} \qquad p_{T,j1} > 100 \,\text{GeV} \qquad p_{tl} < 20 \,\text{GeV}$ $E_{T,\text{miss}} > \max(100 \,\text{GeV}, 0.2 H_T) \qquad H_T = \sum_j p_{T,j} + E_{T,\text{miss}}$ $S_T > 0.2 \qquad |\eta_j| < 3$

Yamazaki [ATLAS and CMS Col.] 0805.3883 Yamamoto [ATLAS Col.] 0710.3953

- each cut suppresses
 background by factor ~ 3
 without modifying the shape
- cut on collinear unsafe sphericity S_T not applied in the following study

Our calculation includes only the leptonic decay of the W (in e, μ or τ) but not the hadronic subsequent decay of τ . However

Our calculation includes only the leptonic decay of the W (in e, μ or τ) but not the hadronic subsequent decay of τ . However

- → kinematic cuts force τ to be highly boosted $\Rightarrow \tau$ -decay highly collimated
- $\Rightarrow \tau^+$ essentially decays only into $\pi^+(2/3 \text{ of energy})$ and ν (1/3 of energy)

Our calculation includes only the leptonic decay of the W (in e, μ or τ) but not the hadronic subsequent decay of τ . However

- → kinematic cuts force τ to be highly boosted $\Rightarrow \tau$ -decay highly collimated
- $\Rightarrow \tau^+$ essentially decays only into $\pi^+(2/3 \text{ of energy})$ and ν (1/3 of energy)

Theoretical robust approximation:

simulate the W decay as a perfect collinear branching with momentum fractions 2/3 (π^+) and 1/3 (v)

Primary observable is H_T (previously called M_{eff}) which 'measures' the SUSY scale:

Primary observable is H_T (previously called M_{eff}) which 'measures' the SUSY scale:

universal enhancement (K-factor ~3) of LO without distorting the shape
 B: some with cuts as shown before had K-factor ~ I
 NLO effect similar to that of cuts but works in opposite direction

CMS style indirect lepton veto cut

How robust is the situation discussed in connection with ATLAS cuts ? Take a different set of cuts, which *targets the same physics*

CMS style indirect lepton veto cut

How robust is the situation discussed in connection with ATLAS cuts ? Take a different set of cuts, which *targets the same physics*

Indirect lepton veto = no explicit lepton veto, but other cuts force contribution from W+jets to become naturally small

 $p_{\rm T,j} > 30 {\rm GeV} \quad p_{\rm T,j1} > 180 {\rm GeV} \quad p_{\rm T,j2} > 110 {\rm GeV} \quad E_{\rm T,miss} > 200 {\rm GeV}$ $|\eta_{\rm lead \; jet}| < 1.7 \quad |\eta_{\rm other \; jets}| < 3 \qquad H_{\rm T,24} = \sum_{j=2}^{4} p_{\rm T,j} + E_{\rm T,miss} > 500 {\rm GeV}$

CMS Collaboration Journal Phys. G: Nucl. Part. Phys. 34 (2007) 995

CMS style indirect lepton veto cut

Primary search observables

distribution in transverse missing energy and total effective mass $H_{T,24}$

- NLO correction to cross-section small, K-factor ~ I
- shapes of LO mostly OK, but moderate shape distortion at high $H_{T,24}$

MLO leads to reduction of scale uncertainties, residual uncertainty to total cross-section ~5% (~50% at LO)

MLO leads to reduction of scale uncertainties, residual uncertainty to total cross-section ~5% (~50% at LO)

Model is the second state of the second sta

- MLO leads to reduction of scale uncertainties, residual uncertainty to total cross-section ~5% (~50% at LO)
- Model is the second section of the section of th
- If this statement very much depends on the choice of scale at LO. Need to make good choice (e.g. CKKW or other dynamical scale)

- MLO leads to reduction of scale uncertainties, residual uncertainty to total cross-section ~5% (~50% at LO)
- Model in the section of the secti
- If this statement very much depends on the choice of scale at LO. Need to make good choice (e.g. CKKW or other dynamical scale)
- Interse (~100%) corrections for ATLAS, small corrections (~10%) for CMS cuts despite the fact that the cuts are designed for the same purpose

- MLO leads to reduction of scale uncertainties, residual uncertainty to total cross-section ~5% (~50% at LO)
- Model in the section of the secti
- If this statement very much depends on the choice of scale at LO. Need to make good choice (e.g. CKKW or other dynamical scale)
- Interse (~100%) corrections for ATLAS, small corrections (~10%) for CMS cuts despite the fact that the cuts are designed for the same purpose
- *if* these corrections are not correlated to the total cross-section

- MLO leads to reduction of scale uncertainties, residual uncertainty to total cross-section ~5% (~50% at LO)
- Model in the section of the secti
- If this statement very much depends on the choice of scale at LO. Need to make good choice (e.g. CKKW or other dynamical scale)
- Interse (~100%) corrections for ATLAS, small corrections (~10%) for CMS cuts despite the fact that the cuts are designed for the same purpose
- *It these corrections are not correlated to the total cross-section*
- If all this emphasizes the need to extend NLO corrections to other processes (Z+3j,W+4j ...)

Extra slides

Cross-section calculation

- Consider the NLO leading color approximation, keep n_f dependence exact (important for beta function) but neglect I/N_c^2 terms
- Real radiation part:
 - leading color tree level W+6 parton amplitudes computed recursively
 we use Catani-Seymour subtraction terms modified to deal with the minimal set of color structures needed at leading color
- Real + virtual implemented in the MCFM parton level integrator

Full-color NLO calculation done by Berger et al. '09

Scale dependence

- scale dependence considerably reduced at NLO (both inclusive and exclusive)
- NLO tends to reduce crosssection
- because of very large scale dependence of LO, quoting a K-factor not very meaningful

Other hadronic distributions

LO with local scale does a very reasonable job in reproducing shapes

<u>NB:</u> normalization of LO remains out of control. LO is normalized to NLO in above plots

Leptonic distributions

same conclusion holds for leptonic distributions

Leptonic distributions

Melnikov GZ '09

same conclusion holds for leptonic distributions

How solid (cut-independent) is this statement ? See what happens with different cuts. Consider two sets of cuts where W+3jet plays the role of unwanted background