MadGraph/MadEvent

Getting ready for the uncertain future...

Michel Herquet - NIKHEF TH

MC4LHC Readiness Workshop

Ready? For what?

Ready? For what?

NLO Exy. sofware Tery exotic

Multi-jet samples
Exotic modsls

Decery crariss
Real corrections

models

Effective theories

Advanced analysis techniques

Cluster/Grid computing
decay fackages

Testing / robustness

MATrix
li:I:M1:WIS

User Interface

Short term plan

Short term plan

Core code: MadGraph v5

[J. Alwal, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer]

*Development strategy

* Structure
* Innovations
* Benchmark v4 versus v5

Development strategy

* Use the "eXtreme Programming" software engineering scheme:
* "Bazaar" design (features first, structure after)
* Pair programming (two brains, one computer)
* Systematic testing (unit, acceptance, parallel)
* Planning game (dynamic feature list, short release plan)
* Intensive use of Distributed Versioning (Bazaar+Launchpad) and collaborative tools (wikis, ...)

Development strategy (ctd.)

* Programming language: Python
* (Very) high level (Object Oriented, functional programming, ...)
* Easy to learn / write / maintain and concise (x4 compared to F77)
* Easily available on all platforms and no compilation required
* Slow, but fast standard library (99\% of calculations) and easily expandable

Structure (MadGraph)

* Abstract and dissociate layers: input \rightarrow parser \rightarrow object \rightarrow calculation \rightarrow object \rightarrow parser \rightarrow output
* Modern architecture:
* madgraph/ The main library, divided into modules (core, iolibs, interfaces, ...), usable as any Python library
* tests/ Various test suites
* apidoc/ Automatically generated documentation

Innovations

* User friendly command line interface (a la ROOT)
* Completely new diagram generation algorithm
* Makes optimal use of model information
* Deal with multiprocesses very efficiently (keep track of discarded combinations, ...)
* Completely new HELAS call generation algorithm (90% less calls for critical cases!)
* Generic and "smart" new color calculation library
* New, faster and generic diagram drawing library
* Matrix elements outputs: Standalone, MadEvent v4, ... and more!
* ... and (much) more to come !!!

Benchmarks

Short term plan

Short term plan

New physics models

* The new FeynRules interface
* Generic color structures
* Generic Lorentz structures

The new FeynRules interface

[C. Duhr, D. Grellscheid, M. Herquet, W. Link, O. Mattelaer]

* Full use of Object Oriented notation (in Python)
* Lists of particles, interactions, coupling expressions, parameters (internal and external), but also color and Lorentz structures!
* Not restricted to MadGraph, easy to extend
* The most ambitious Lagrangian-to-MC interface up-to-date, first step towards unprecedented BSM possibilities

```
vertices[0] = {
    'particles':[u, u, g],
    'color':[ 'T(a3,i2,i1)', ...],
    'lorentz':[ L1, L2, ...],
    'couplings':[ (0,0):'g1', (0,1):'g2', ...],
    'orders':['QCD', ...]
    }
```


Generic color structures

* Color is now completely generic (tested SM $2 \rightarrow 2,2 \rightarrow 3$):
* The color structure of a vertex is described inside the model using a textbook notation, e.g.:

$$
\begin{aligned}
& \text { 'color': [[f(0, 1, -1),f(2, 3, -1)], } \\
& {[f(2,0,-1), f(1,3,-1)],} \\
& [f(1,2,-1), f(0,3,-1)]]
\end{aligned}
$$

* The full color factor associated with a diagram is simplified using (easy to implement and modify) simple rules, e.g.,

$$
\begin{aligned}
& f(a, b, c)=-2 \operatorname{Ir}(a, b, c)+2 \operatorname{Tr}(c, b, a) \\
& \operatorname{Tr}(a, x, b) \operatorname{T}(c, x, d, i, j)= 1 / 2(\operatorname{T}(c, b, a, d, i, j) \\
&-1 / \operatorname{Nc} \operatorname{Tr}(a, b) \operatorname{T}(c, d, i, j))
\end{aligned}
$$

to build the color basis and color matrices for squared amplitudes

Generic Lorentz structures

[P. de Aquino, W. Link, O. Mattelaer]

* Lorentz is now completely generic (tested SM $2 \rightarrow 2,99 \%$ of SM $2 \rightarrow 3$ yesterday!):
* The color structure of a vertex is described inside the model using a textbook notation, e.g.:
'Structure':[complex(0,1)*Gamma(1,2,'a')*ProjM('a',3)]
* The corresponding optimized "HELAS" routines are produced automatically

```
SUBROUTINE VERTEX1_111(C,V1,F2,F3,VERTEX)
IMPLICIT NONE
DOUBLE PRECISION C
DOUBLE COMPLEX V1(6)
DOUBLE COMPLEX F2(6)
DOUBLE COMPLEX F3(6)
DOUBLE COMPLEX VERTEX
VERTEX = C*((F3(4)*V1(1)gra*F2(2))+(F3(4)*V1(4)*F2(2))+(F3(4)*V1(2)
s*F2(1))+1.*(0,1.)*(F3(4)*V1(3)*F2(1))+(F3(3)*V1(2)*F2(2))
$ +-1.*(0,1.)*(F3(3)*V1(3)*F2(2))+(F3(3)*V1(1)*F2(1))+-(F3(3)
S *V1(4)*F2(1))+(F3(2)*V1(1)*F2(4))+-(F3(2)*V1(4)*F2(4))
$ +-(F3(2)*V1(2)*F2(3))+-1.*(0,1.)*(F3(2)*V1(3)*F2(3))+-(F3(1)
s*V1(2)*F2(4))+1.*(0,1.)*(F3(1)*V1(3)*F2(4))+(F3(1)*V1(1)*F2(3))
S +(F3(1)*V1(4)*F2(3)))
END
```


Short term plan

Short term plan

*NLO calculations

* Matching/merging ME/PS

NLO: the problem

NLO

$=$
$\sigma^{\mathrm{NLO}}=$

NLO: the problem

NLO Virtual

$\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+$

NLO: the problem

NLO: the problem

$$
\sigma^{\mathrm{NLO}}=\int_{m} d^{(d)} \sigma^{V}+\quad \text { Virtual }
$$

[V. Hirschi, R. Pittau, M. V. Garzielli; R. Frederix]

* Two (complementary) approaches:
* Use MG to generate diagrams and calculate n+2 amplitudes to build the NLO result (CutTools technique), $\mathrm{e}+\mathrm{e}-\rightarrow 2$ and 3 jets already checked. Advantages: valid for any BSM model

* Rely on external tool(s) (BlackHat, Rocket, Golem, ...) using the Binoth-LHA accord (see Rikkert's talk). Various e+e- and hadronic processes checked. Advantage: strong optimization possibilities.
* Two approaches:
* MadDipole: Catani-Seymour dipole substraction scheme, standalone implementation (TH), cancellation of singularities checked, and dipoles checked against MCFM
* MadFKS: Frixione-Kunszt-Signer substraction scheme, integration is available (TH +PH), cancellation of singularities checked + see Stefano's talk
* Both: usable both for SM and BSM processes, and for massless and massive external particles

ME/PS Matching

* Matching schemes implemented with Pythia: kT and cone jet MLM schemes, new "shower kT" scheme
* Both Q^{2} - and pT-ordered Pythia parton showers
* Extensively validated, W+jets compared with other generators and Tevatron data
* Allows matching in most SM and BSM processes

Jet resolution for 1 to 2 jets

Cutoff (unphysical)

Matching for BSM processes
 [J. Alwall, S. de Visscher, F. Maltoni]

600 GeV gluino pair production at the LHC

Matching for BSM processes
 [J. Alwall, S. de Visscher, F. Maltoni]

600 GeV gluino pair production at the LHC

Short term plan

Short term plan

*MadWeight: Matrix Element methods
*MadOnia: Onium production

* MadGraph on a graphic card
*Mass production

MadWeight

[P. Artoisenet, V. Lemaitre, F. Maltoni, O. Mattelaer]

* Tool to find matrix element weight of exp. events for (almost) any process in any model:

Phase space integration using automatic change of variables aligned with peaks

Find likelihood for model parameters (here top mass)

MadOnia

[P. Artoisenet, F. Maltoni, T. Stelzer]

* Production of quarkonium events at tree level within non relativistic QCD
* Example of application: $\Upsilon+$ jets in hadron collisions

(d)

MadGraph on a graphic card

 [K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer]* Use a graphics processing unit (GPU) for fast calculations of helicity amplitudes
* New HELAS in CUDA library, HEGET, and convertor for MG
* First studies for QED and QCD processes
* Impressive speed improvements (x 20-150)

Mass production

* "Gridpack" version of MG/ME:
* Completely frozen, self contained package for a given process/set of cuts (only inputs: number of events and random seed)
* Designed to be sent over the Grid
* Public library of several SM backgrounds (jets, W,Z+jets, tops+jets,...) available and validated (matching,...). Currently ~ 100 gridpacks for 10 and 14 TeV .
* Used for massive production of SM backgrounds by the CMS collaboration

Timeline

Sept 09 Dec 09 Mar 10 June 10 Sept 10 Dec 10

MG
ME
BSM
NLO V
NLO R
Tools

Timeline

Sept 09 Dec 09 Mar 10 June 10 Sept 10 Dec 10

MG
ME
BSM
NLO V
NLO R
Tools

Timeline

	Sept 09 Dec 09 Mar 10 June 10 Sept 10 Dec 10
IC	MadGraph v4
Mig	Development phase v5 Release core MG v5
ME	MadEvent v4
	Start dvlpt. ME v5
BSM	
NLO V	
NLO R	
Tools	

Timeline

Sept09 Dec 09 Mar 10 June 10 Sept 10 Dec 10

Timeline

Timeline

Timeline

Timeline

To bring back home...

*MG/ME v4 is now a mature, well established and stable code coming with several features for BSM and QCD physics, and numerous peripheral tools

To bring back home...

*MG/ME v4 is now a mature, well established and stable code coming with several features for BSM and QCD physics, and numerous peripheral tools

* MG / ME v5 is behind the corner, with important and unprecedented improvements in all directions. Stable release of core MadGraph v5 by summer.

Thanks!

