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Core code: MadGraph v5

✤ Development strategy
✤ Structure
✤ Innovations
✤ Benchmark v4 versus v5

[J. Alwal, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer]



Development strategy

✤ Use the “eXtreme Programming” software engineering scheme:

✤ “Bazaar” design (features first, structure after)

✤ Pair programming (two brains, one computer)

✤ Systematic testing (unit, acceptance, parallel)

✤ Planning game (dynamic feature list, short release plan)

✤ Intensive use of Distributed Versioning (Bazaar+Launchpad) and 
collaborative tools (wikis, ...)



Development strategy (ctd.)

✤ Programming language: Python

✤ (Very) high level (Object Oriented, functional programming, ...)

✤ Easy to learn/write/maintain and concise (x4 compared to F77)

✤ Easily available on all platforms and no compilation required

✤ Slow, but fast standard library (99% of calculations) and easily 
expandable



Structure (MadGraph)

✤ Abstract and dissociate layers:

 input → parser → object → calculation → object → parser → output 

✤ Modern architecture:

✤ madgraph/ The main library, divided into modules (core, iolibs, 
interfaces, ...), usable as any Python library

✤ tests/ Various test suites

✤ apidoc/ Automatically generated documentation



Innovations

✤ User friendly command line interface (a la ROOT)
✤ Completely new diagram generation algorithm

✤ Makes optimal use of model information
✤ Deal with multiprocesses very efficiently (keep track of discarded 

combinations, ...)
✤ Completely new HELAS call generation algorithm (90% less calls for 

critical cases!)
✤ Generic and “smart” new color calculation library
✤ New, faster and generic diagram drawing library
✤ Matrix elements outputs: Standalone, MadEvent v4, ... and more!
✤ ... and (much) more to come !!!



Benchmarks

MG4
standalone

MG5 0.3
Alpha

SM 2→2

SM 2→3

4 min 1 min

70 min 26 min



Short term plan

Core
v5QCD Tools

BSM



Short term plan

Core
v5QCD Tools

BSM



New physics models

✤ The new FeynRules interface
✤ Generic color structures
✤ Generic Lorentz structures



The new FeynRules interface

✤ Full use of Object Oriented notation (in Python)

✤ Lists of particles, interactions, coupling expressions, parameters 
(internal and external), but also color and Lorentz structures!

✤ Not restricted to MadGraph, easy to extend

✤ The most ambitious Lagrangian-to-MC interface up-to-date, first step 
towards unprecedented BSM possibilities

[C. Duhr, D. Grellscheid, M. Herquet, W. Link, O. Mattelaer]
}

For external parameters, value is a number, whereas for internal parameters it is an algebraic expression.
For external parameters there are two more attributes linking the parameter to the corresponding entry
in the param_card.dat,

’lhablock’:’SMINPUTS’,
’lhacode’:[1,2,3,...],

3 vertices.py

Each vertex is represented as a dictionary, e.g. for the u, ū, g vertex,

vertices[0] = {
’particles’:[u, u, g],
’color’:[ ’T(a3,i2,i1)’, ...],
’lorentz’:[ L1, L2, ...],
’couplings’:[ (0,0):’g1’, (0,1):’g2’, ...],
’orders’:[’QCD’, ...]
}

color is a list of all color structures appearing in the vertex. Similarly, lorentz is a list containing
all Lorentz structures appearing in the vertex. Note that ’L1’, ’L2’, ... denote the classes of HELAS
routines (See below). Finally, couplings is a list linking the couplings to the color and Lorentz structures,
i.e., (0,0):’g1’ represents g1 * T(a3, i2, i1) * L1, etc.

4 couplings.py

couplings[0] = {
’name’:’g1’,
’expression’: ...
}

5 lorentz.py

buildingblocks[0] = {
’name’:’B1’,
’expression’: ...
}

lorentz[0] = {
’name’:’L1’,

2
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Generic color structures
✤ Color is now completely generic (tested SM 2→ 2, 2 → 3):

✤ The color structure of a vertex is described inside the model 
using a textbook notation, e.g.:

✤ The full color factor associated with a diagram is simplified 
using (easy to implement and modify) simple rules, e.g., 

to build the color basis and color matrices for squared 
amplitudes 

‘color’:[[f(0, 1, -1),f(2, 3, -1)],
         [f(2, 0, -1),f(1, 3, -1)],
         [f(1, 2, -1),f(0, 3, -1)]]

Tr(a,x,b)T(c,x,d,i,j) = 1/2(T(c,b,a,d,i,j)
                              -1/Nc Tr(a,b)T(c,d,i,j))

f(a,b,c) = -2 I Tr(a,b,c) + 2 I Tr(c,b,a)



Generic Lorentz structures
✤ Lorentz is now completely generic (tested SM 2→ 2, 99% of SM 2 → 3 

yesterday!):

✤ The color structure of a vertex is described inside the model using 
a textbook notation, e.g.:

✤ The corresponding optimized “HELAS” routines are produced 
automatically

[P. de Aquino, W. Link, O. Mattelaer]

'Structure':[complex(0,1)*Gamma(1,2,'a')*ProjM('a',3)]
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QCD

✤ NLO calculations
✤ Matching/merging ME/PS
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NLO: virtual contributions

✤ Two (complementary) approaches:

✤ Use MG to generate diagrams and calculate n+2 amplitudes to 
build the NLO result (CutTools technique), e+e- → 2 and 3 jets 
already checked. Advantages: valid for any BSM model

✤ Rely on external tool(s) (BlackHat, Rocket, Golem, ...) using the 
Binoth-LHA accord (see Rikkert’s talk). Various e+e- and hadronic 
processes checked. Advantage: strong optimization possibilities.

≡

[V. Hirschi, R. Pittau, M. V. Garzielli; R. Frederix]



NLO: real contributions

✤ Two approaches:

✤ MadDipole: Catani-Seymour dipole substraction scheme, 
standalone implementation (TH), cancellation of singularities 
checked, and dipoles checked against MCFM

✤ MadFKS: Frixione-Kunszt-Signer substraction scheme, integration 
is available (TH+PH), cancellation of singularities checked + see 
Stefano’s talk

✤ Both:  usable both for SM and BSM processes, and for massless and 
massive external particles

[R. Frederix, S. Frixione, T. Gehrmann, N. Greiner, F. Maltoni, T. Stelzer]

http://www-spires.dur.ac.uk/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2C%20Thomas%22
http://www-spires.dur.ac.uk/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2C%20Thomas%22
http://www-spires.dur.ac.uk/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Greiner%2C%20Nicolas%22
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ME/PS Matching

✤ Matching schemes implemented with 
Pythia: kT and cone jet MLM schemes, 
new “shower kT” scheme

✤ Both Q2- and pT-ordered Pythia parton 
showers

✤ Extensively validated, W+jets 
compared with other generators and 
Tevatron data

✤ Allows matching in most SM and BSM 
processes 

[Alwall et al.]

Jet resolution for 1 to 2 jets

Cutoff (unphysical)



Matching for BSM processes
[J. Alwall, S. de Visscher, F. Maltoni]

600 GeV gluino pair production at the LHC



Matching for BSM processes
[J. Alwall, S. de Visscher, F. Maltoni]

600 GeV gluino pair production at the LHC
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Tools

✤ MadWeight: Matrix Element methods
✤ MadOnia: Onium production
✤ MadGraph on a graphic card
✤ Mass production



MadWeight

✤ Tool to find matrix element weight of exp. events for (almost) any 
process in any model:

[P. Artoisenet, V. Lemaitre, F. Maltoni, O. Mattelaer]

Phase space integration using 
automatic change of variables 

aligned with peaks

Find likelihood for model 
parameters (here top mass)



MadOnia
✤ Production of quarkonium events at tree level within non relativistic 

QCD

✤ Example of application: ϒ+ jets in hadron collisions

[P. Artoisenet, F. Maltoni, T. Stelzer]



MadGraph on a graphic card

✤ Use a graphics processing unit 
(GPU) for fast calculations of 
helicity amplitudes

✤ New HELAS in CUDA library, 
HEGET, and convertor for MG

✤ First studies for QED and QCD 
processes

✤ Impressive speed 
improvements (x 20-150)

[K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer]

K. Hagiwara et al.: Calculation of HELAS amplitudes for QCD 7

Table 6. Total cross sections for gg→gluons [fb].

No. of jets HEGET Bases MadGraph/MadEvent

2 3.1929 ± 0.0010 3.1928 ± 0.0010 3.1902 ± 0.0076 ×1011

3 2.6201 ± 0.0023 2.6136 ± 0.0036 2.6221 ± 0.0061 ×1010

4 5.813 ± 0.020 5.8140 ± 0.0095 5.776 ± 0.034 ×109

Table 7. Total cross sections for uu→gluons [fb].

No. of jets HEGET Bases MadGraph/MadEvent

2 2.8981 ± 0.0007 2.8969 ± 0.0006 2.8991 ± 0.0073 ×107

3 1.8420 ± 0.0012 1.8388 ± 0.0018 1.8421 ± 0.0077 ×106

4 4.465 ± 0.022 4.496 ± 0.017 4.399 ± 0.038 ×105

5 1.566 ± 0.057 1.589 ± 0.018 1.542 ± 0.039 ×105

Table 8. Total cross sections for uu→uu+gluons [fb].

No. of jets HEGET Bases MadGraph/MadEvent

2 2.6715 ± 0.0014 2.6743 ± 0.0011 2.6689 ± 0.0047 ×108

3 5.897 ± 0.004 5.889 ± 0.010 5.871 ± 0.015 ×107

4 2.7754 ± 0.0130 2.7500 ± 0.0083 2.748 ± 0.042 ×107

5 1.513 ± 0.024 1.560 ± 0.013 1.513 ± 0.024 ×106

∼8.6, which roughly agrees with the ratio of the numbers
of Feynman diagrams (Table 1), 510/45∼ 11. The corre-
sponding ratio on GPU is 3.8 µsec/0.1 µsec∼38, which is
significantly larger.

For the same number of jets, we also observe that
the event process times on the CPU are roughly pro-
portional to the number of diagrams. Fir njet = 4, the
ratio of the process times for gg → 4g to uu → 4g are
about 120 µsec/29 µsec ∼ 4.1 on CPU, as compared to
the ratio of the number of Feynman diagrams in Table 1,
510/159 ∼ 3.2. The same applies to njet = 5 between
uu→5g and uu→uuggg, where Feynman diagrams have
the ratio 1890/786∼2.4 from Table 1, and the event pro-
cess time on the CPU gives 300 µsec/180 µsec∼1.7, also
in rough agreement.

On the other hand, the event process times on the GPU
for gg → 4g and uu→ 4g have a ratio 3.8 µsec/0.45 µsec
∼ 8.4 which is much larger than the ratio of the diagram
numbers; while that for uu→5g and uu→uuggg has the
ratio of 11µsec/9.5µsec∼ 1.15. Although we do not fully
understand the above behavior of the event process time
on the GPU, we find that they tends to scale as the prod-
uct of the number of Feynman diagrams and the number
of color bases, while the event process times on the CPU
are not sensitive to the latter. This is probably because as
the number of color bases grows, more amplitudes, (Jλi)α

in eq. (8), should be stored and then called to compute the
color sum, eq. (10). These observations tell us that the rel-
ative weight of the color matrix computation in the GPU
computing is very significant even after identifying the in-
dependent elements of the color matrix Nαβ in eq. (9) as
listed in Table 4.
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5.3 Comparison of performance of GPU and CPU

The ratios of event process times between CPU and GPU
are shown in Fig. 2. Three lines correspond to gg→n-jets
denoted as gg, uu→ n-jets as uu and uu→ uu+(n−2)-
jets as uu, respectively. The performance ratios exceed
100 for the processes with small numbers of jets (njet≤3)
in the final state. For njet = 4 and 5, the performance
ratios gradually drop to less than 40. For processes with
large numbers of color bases, the ratios are smaller. For
gg→4 gluons, which has 120 color bases, the ratio is about
30, and for uu→uu+3gluons, which has 240 color bases,
the ratio becomes about 20.

5.4 Note on gg → 5g study

Among five-jet production processes we have not been able
to run the program for gg→5g. This process has 7245 di-

8 K. Hagiwara et al.: Calculation of HELAS amplitudes for QCD
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agrams and 720 color basis vectors. In order to compile
the program for the computation of this process, we use
the technique developed in the previous study [1]. By di-
viding the program into about 140 pieces we were able
to compile the gg→5g program. Compilation takes about
90 min. on a Linux PC. The total size of the compiled pro-
gram exceeds 200 MB, and we were not able to execute
this compiled program on a GTX280.

6 Summary

We have shown the results of our attempt to evaluate QCD
multi-jet production processes at hadron colliders on a
GPU [11], Graphic Processing Unit, following the encour-
aging results obtained for QED multi-photon production
processes in ref. [1].

Our achievements and findings may be summarized as
follows.

– A new set of HEGET functions written in CUDA [2], a
C-language platform developed by NVIDIA for general
purpose GPU computing, are introduced to compute
triple and quartic gluon vertices. The HEGET routines
for massless quarks were introduced in ref. [1], and
the routine for photons [1] can be used for gluons. In
addition, the HEGET functions for the qqg vertex are
the same as those for the qqγ vertex introduced in
ref. [1].

– The HELAS amplitude code generated by MadGraph [4]
is converted to a CUDA program which calls HEGET
functions for the following three type of subprocesses:
gg → ng (n ≤ 5), uu → ng (n ≤ 5), and uu → uu+ng
(n≤3).

– Summation over color degrees of freedom was performed
on a GPU by identifying the same valued elements of
the color matrix of eq. (9), in order to reduce the mem-
ory size.

– All the HEGET programs for up to 5 jets passed the
CUDA compiler after division into small pieces. How-
ever, we could not execute the program for the process
gg→5g. Accordingly, comparisons of performance be-

tween GPU and CPU are done for the multi-jet pro-
duction processes up to 5 jets, excluding the purely
gluonic subprocess.

– Event process times of the GPU program on GTX280
are more than 100 times faster than the CPU program
for all the processes up to 3-jets, while the gain is re-
duced to 60 for 4-jets with one or two quark lines, and
to 30 for the purely gluonic process. It further goes
down to 30 and 20 for 5-jet production processes with
one and two quark lines, respectively.

– We find that one cause of the rapid loss of GPU gain
over CPU as the number of jets increases is the growth
in the number of color bases. GPU programs slow down
for processes with larger numbers of color basis vectors,
while the performance of the CPU programs is not
affected much.

– All computations on the GPU were performed with
single precision accuracy. A factor of 2.5 to 4 slower
performance is found for double precision computation
on the GPU.

Acknowledgement. We thank Johan Alwall, Qiang Li and Fabio
Maltoni for stimulating discussions. This work is supported by
the Grant-in-Aid for Scientific Research from the Japan Society
for the Promotion of Science (No. 20340064) and the National
Science Foundation (No. 0757889).

Appendix A Additional HEGET functions

In the appendix, we list the HEGET functions introduced
in this report. They are for the ggg and gggg vertices
which do not have counterparts in QED. Together with the
HEGET functions listed in ref. [1], the quark and gluon
(photon) wave functions and the qqg(qqγ) vertices, all the
QCD amplitudes can be computed on GPU.

Appendix A.1 Functions for the VVV vertex

List 1. vvvxxx.cu

#include "cmplx.h"

__device__
void vvvxxx(cmplx* ga, cmplx* gb, cmplx* gc,

float g, cmplx& vertex)
{

cmplx v12 = ga[0]*gb[0]
- ga[1]*gb[1] - ga[2]*gb[2] - ga[3]*gb[3];

cmplx v23 = gb[0]*gc[0]
- gb[1]*gc[1] - gb[2]*gc[2] - gb[3]*gc[3];

cmplx v31 = gc[0]*ga[0]
- gc[1]*ga[1] - gc[2]*ga[2] - gc[3]*ga[3];

float pga[4];
float pgb[4];
float pgc[4];

pga[0] = ga[4].re;
pga[1] = ga[5].re;
pga[2] = ga[5].im;
pga[3] = ga[4].im;

pgb[0] = gb[4].re;
pgb[1] = gb[5].re;
pgb[2] = gb[5].im;
pgb[3] = gb[4].im;
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Mass production

✤ “Gridpack” version of MG/ME:

✤ Completely frozen, self contained package for a given process/set 
of cuts (only inputs: number of events and random seed) 

✤ Designed to be sent over the Grid

✤ Public library of several SM backgrounds (jets, W,Z+jets, tops+jets,...) 
available and validated (matching,...). Currently ~100 gridpacks for 
10 and 14 TeV.

✤ Used for massive production of SM backgrounds by the CMS 
collaboration
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To bring back home...

✤ MG/ME v4 is now a mature, well established and 
stable code coming with several features for BSM 
and QCD physics, and numerous peripheral tools

✤ MG/ME v5 is behind the corner, with important 
and unprecedented improvements in all directions. 
Stable release of core MadGraph v5 by summer.



Thanks!


