# MENLOPS

#### Making the most out of POWHEG & MEPS events.

K.Hamilton and P.Nason



Università degli Studi di Milano-Bicocca



- NLOPS & MEPS features.
- Theoretical considerations for MEPS  $\rightarrow$  MENLOPS.
- Making the most of available tools.
- A simple recipe for a MENLOPS sample.
- Case studies.



#### Features:

- Inclusive event sample 🖌
- $\bullet$  Exact description of hardest emission  $\checkmark$
- Multi-jet radiation not even LO [shower approx] 样
- LL resummation of multiple soft collinear emission  $\checkmark$
- NLO normalisation and shape virtuals  $\checkmark$
- NLO sensitivity to  $\mu_R$  and  $\mu_F$  🖌
- Lots of well tested codes, automation in progress 🗸 🗸



#### Features:

- Inclusive event sample 🗸
- Exact description of hardest emission  $\checkmark$
- Multi-jet radiation LO 🗸
- LL resummation of multiple soft collinear emission  $\checkmark$
- LO normalisation and shape virtuals X
- LO sensitivity to  $\mu_{R}$  and  $\mu_{F}$
- Lots of mature, trusted, highly automated codes 🖌 🖌

#### POWHEG oversimplified

#### POWHEG hardest emission x-sec:

$$d\sigma = \overline{B}(\Phi_{B}) d\Phi_{B} \left[ \overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_{T}) \frac{\overline{R}(\Phi_{B}, \Phi_{R})}{\overline{B}(\Phi_{B})} d\Phi_{R} \right]$$
  
Integrand in  $\overline{\Delta}(p_{T})$  is exactly  
$$\int d\Phi_{R} \left[ \dots \right] = \overline{\Delta}(p_{T,\min}) + \int_{\overline{\Delta}(p_{T,\min})}^{1} d\overline{\Delta}(p_{T}) = 1$$

## MEPS in the POWHEG language

#### From general arguments the MEPS x-sec is:

[For Sudakovs red hats  $\rightarrow$  blue hats]

Born x-sec [LO]

$$d\sigma = B(\Phi_B) d\Phi_B \left[ \overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \right]$$
  
Effective Sudakov  
form factor; same  
LL accuracy as PS

N.B. Integrand in  $\overline{\Delta}(p_T)$  is not  $\overline{R}(\Phi_B, \Phi_R)/B(\Phi_B)$  !

#### MEPS in the POWHEG language

#### From general arguments the MEPS x-sec is:

[For Sudakovs red hats  $\rightarrow$  blue hats]

Born x-sec [LO]

$$d\sigma = B(\Phi_B) d\Phi_B \left[ \overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \right]$$

Effective Sudakov form factor; same LL accuracy as PS

Real emission x-sec ÷ Born x-sec

$$= \int d\Phi_{\rm R} \left[ \dots \right] \equiv N(\Phi_{\rm B}) \neq 1$$

#### MEPS in the POWHEG language

Unitarity breaking manifest as  $\overline{B}_{ME}(\Phi_B)$  fn in MEPS:

$$d\sigma = \overline{B}_{ME}(\Phi_B) d\Phi_B \begin{bmatrix} \overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \\ N(\Phi_B) \end{bmatrix}$$
  
Integrates to 1  
$$\overline{B}_{ME}(\Phi_B) \equiv B(\Phi_B) \times N(\Phi_B) \\ = B(\Phi_B) \times [1 + O(\alpha_s)]$$

#### Turning MEPS into MENLOPS

#### Promoting MEPS $\rightarrow$ MENLOPS:

$$d\sigma = \overline{B}_{ME}(\Phi_B) d\Phi_B \begin{bmatrix} \overline{\Delta}(p_{T,min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \\ N(\Phi_B) \end{bmatrix}$$
  
Integrates to 1

calculate  $\overline{B}_{\text{ME}}(\Phi_{\text{B}})$  and reweight MEPS by:  $\cdot$ 



#### Turning MEPS into MENLOPS

#### Promoting MEPS $\rightarrow$ MENLOPS:

$$d\sigma = \overline{B}(\Phi_B) d\Phi_B \begin{bmatrix} \overline{\Delta}(p_{T,\min}) + \overline{\Delta}(p_T) \frac{\overline{R}(\Phi_B, \Phi_R)}{B(\Phi_B)} d\Phi_R \\ N(\Phi_B) \end{bmatrix}$$
  
Integrates to 1

calculate  $\overline{B}_{ME}(\Phi_B)$  and reweight MEPS by:



#### MENLOPS

## Features:

- Inclusive events sample 🗸
- Exact description of hardest emission  $\checkmark$
- Multi-jet radiation now LO 🗸
- LL resummation of multiple soft collinear emission  $\checkmark$
- NLO normalisation and shape virtuals  $\checkmark$
- NLO sensitivity to  $\mu_R$  and  $\mu_F$  🖌
- No codes, no testing, no automation, no time soon 🗙



## Practical question:

#### How close can you get to the exact

# MENLOPS picture with today's tools?



#### <u>O-jet events:</u>

# O-jet x-section: NLOPS NLO MEPS LO

O-jet events: NLOPS NLO MEPS LO

NLOPS beats MEPS for O-jet description; same description as MENLOPS for O-jets.

# pp →W + 0 jets



# W+O parton ME $\otimes$ shower

# pp →W + 0 jets



# NLO Born kinematics

W+1 parton  $ME \otimes shower$ 



#### 1-jet events:

# 1-jet x-section: NLOPS nLO MEPS LO

# 1-jet events: NLOPS nLO MEPS LO

NLOPS equal to MEPS for 1-jet description; same description as MENLOPS for 1-jets.

# pp →W + l jets



# $pp \rightarrow W + 1 jets$





#### <u>2-jet events:</u>

# 2-jet x-section: NLOPS not even LO MEPS LO

# 2-jet events: NLOPS not even LOMEPS LO

MEPS beats NLOPS for 2-jet description; not as good as MENLOPS for 2-jets.

# $pp \rightarrow W + 2 jets$



# pp →W + 2 jets





## Practical question:

#### How close can you get to the exact

# MENLOPS picture with today's tools?

#### MENLOPS

# Poor man's recipe for MENLOPS:

- O-jet x-sec = NLOPS [as in exact case]
- n-jet x-sec = MEPS n-jet x-sec × K[≥ 1-jet] [as in exact case]
- total x-sec therefore as in NLOPS
- O-jet events from NLOPS [as in exact case]
- 1-jet events from NLOPS [as in exact case]
- n-jet events from MEPS for  $n \ge 2$

#### MENLOPS

#### Won't this destroy NLO accuracy?

It will if you aren't careful.

You put in a bunch of LO MEPS events containing 2 or more jets!

Basically, in the exact formula, for  $\geq 2$ -jet events, you swapped:

$$\frac{\overline{B}(\Phi_{B})}{\overline{B}_{ME}(\Phi_{B})} \rightarrow K[\geq 1\text{-jet}]$$



#### Won't this destroy NLO accuracy?

It won't ...

if the number of 2-jet events is a fraction less than  $O(\alpha_s)$  of the total sample ...

i.e. NLO accuracy is safe so long as the MENLOPS scale isn't too small.

# Case studies: tt and W production

- MEPS: MadGraph with 'MLM-k<sub>T</sub>' scheme
  - NLOPS: POWHEG-hvq [ $t\bar{t}$ , tops set stable ]
- NLOPS: POWHEG-w [ $W \rightarrow e^{\overline{v}_e}$ ]
- PYTHIA: Q<sup>2</sup> ordered shower in MEPS
  - PYTHIA: p<sub>T</sub> ordered shower for NLOPS
  - PDF: MRST 2002 NLO used everywhere
- LHC nominal C.O.M. energy  $\sqrt{S}$  = 14 TeV

# Case studies: tt and W production

#### tt production:

- MEPS merging scale: 30 GeV
- MENLOPS clustering scale: 60 GeV
- MENLOPS MEPS content: 12.5 %

#### W<sup>-</sup>production:

- MEPS merging scale: 20 GeV
- MENLOPS merging scale: 25 GeV
- MENLOPS MEPS content: 5 %

# Inclusive quantities: tt rapidity



# $Y_{J2}\text{-}Y_{t\overline{t}}$ and $\Delta\varphi_{J1,t\overline{t}}$ in $t\overline{t}$ events





# $Y_{J2}-Y_{t\bar{t}}$ and $\Delta \phi_{J1,t\bar{t}}$ in $t\bar{t}$ events



Jet 2 seems to have more correlation with Jet 1 in NLOPS w.r.t. MEPS



# $Log[y_{nm}]$ differential jet rates in tt events



## Inclusive quantities: W<sup>-</sup> rapidity



#### Inclusive quantities: $W^{-} p_{T}$



## $p_T$ of hardest Jet in W<sup>-</sup> production



## $p_T$ of hardest Jet in W<sup>-</sup> production



Same again but MENLOPS scale floating: N[25 GeV,5<sup>2</sup> GeV<sup>2</sup>]



# 2nd Jet $p_T$ and rapidity in W<sup>-</sup> events





There is a lot of mature, well automated, MEPS code.

Currently there is a fast growing body of NLOPS code.

We considered an exact scheme for combining the two.

We asked how close you can get, now, using what's at hand.

We traded a little 'exactness' for a practical, general, recipe.

The cost is a dependence on the MENLOPS scale.



But we bound the MENLOPS scale from below preserving NLO accuracy.

In principle this limits the corrections to  $\geq 2$ -jets events.

If the MENLOPS bound ≤ MEPS scale full corrections are obtained: exact MENLOPS matching becomes academic.

Also consider point of view of exp. requirements, what do you gain from ME corrections to PS description of jets below ~40 GeV at LHC [U.E. etc]?



- We tried out the MENLOPS recipe with MadGraph & some POWHEG codes [shouldn't really matter what you use].
- It was pretty easy to do ...
- Positive improvements in inclusive & exclusive quantities.
- NLO accuracy was retained throughout.
- In W events for MENLOPS scale = MEPS scale: P[MEPS] < 8%