HELAC(NLO) - STATUS REPORT

Costas G. Papadopoulos

NCSR "Demokritos", Athens

MC4LHC: March 30, 2010, CERN

Current

- G. Bevilacqua bevilacqua@inp.demokritos.gr
- M. Czakon mczakon@physik.rwth-aachen.de
- M. Garzelli garzelli@to.infn.it
- A. van Hameren Andre. Hameren@ifj.edu.pl
- J. Malamos J.Malamos@science.ru.nl
- C.G. Papadopoulos costas.papadopoulos@cern.ch
- R. Pittau pittau@ugr.es
- M. Worek worek@physik.uni-wuppertal.de

Contributors

- A. Kanaki
- A. Cafarella
- P. Draggiotis
- G. Ossola

HELAC TEAM

Costas G. Papadopoulos (Athens)

Dyson-Schwinger Recursive Equations

• 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles

A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306 [arXiv:hep-ph/0002082].

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles
- 2000 PHEGAS: The first code to automatically produce phase-space mappings based on all FD

C. G. Papadopoulos, Comput. Phys. Commun. 137 (2001) 247 [arXiv:hep-ph/0007335].

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles
- 2000 PHEGAS: The first code to automatically produce phase-space mappings based on all FD
- Including all SM, in both unitary and F-gauge, masses, CKM, unstable particle widths, complex mass scheme, etc.

- 1999 HELAC: The first code to calculate recursively tree-order amplitudes for (practically) arbitrary number of particles
- 2000 PHEGAS: The first code to automatically produce phase-space mappings based on all FD
- Including all SM, in both unitary and F-gauge, masses, CKM, unstable particle widths, complex mass scheme, etc.
- For QCD color connection representation: revival of the 't Hooft ideas ('71) in the modern era.

COLOR REPRESENTATION

 $\mathsf{Color}\text{-}\mathsf{assignment} \to \mathsf{color} \ \mathsf{connections}$

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum_{\sigma} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \ldots \delta_{i_{\sigma_k},j_k} \mathcal{A}_{\sigma}$$

gluons \rightarrow (i, j), quark \rightarrow (i, 0), anti-quark \rightarrow (0, j), other \rightarrow (0, 0)

COLOR REPRESENTATION

 $\mathsf{Color}\text{-}\mathsf{assignment} \to \mathsf{color} \ \mathsf{connections}$

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum_{\sigma} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \ldots \delta_{i_{\sigma_k},j_k} \mathcal{A}_{\sigma}$$

Color sum

$$\mathcal{C}_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} |\mathcal{M}_{j_1,j_2,\dots,j_k}^{i_1,i_2,\dots,i_k}|^2$$

$$\sum_{\sigma,\sigma'} \mathcal{A}_{\sigma}^* \mathcal{C}_{\sigma,\sigma'} \mathcal{A}_{\sigma'}$$

$$\mathcal{C}_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} \delta_{i\sigma_1,j_1} \delta_{i\sigma_2,j_2} \dots \delta_{i\sigma_k,j_k} \delta_{i\sigma_1',j_1} \delta_{i\sigma_2',j_2} \dots \delta_{i\sigma_k',j_k}$$

COLOR REPRESENTATION

 $\mathsf{Color}\text{-}\mathsf{assignment} \to \mathsf{color} \ \mathsf{connections}$

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum_{\sigma} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \ldots \delta_{i_{\sigma_k},j_k} \mathcal{A}_{\sigma}$$

Color sum

$$\mathcal{C}_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} |\mathcal{M}_{j_1,j_2,\dots,j_k}^{i_1,i_2,\dots,i_k}|^2$$

$$\sum_{\sigma,\sigma'} \mathcal{A}_{\sigma}^* \mathcal{C}_{\sigma,\sigma'} \mathcal{A}_{\sigma'}$$

$$\mathcal{C}_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \dots \delta_{i_{\sigma_k},j_k} \delta_{i_{\sigma_1'},j_1} \delta_{i_{\sigma_2'},j_2} \dots \delta_{i_{\sigma_k'},j_k}$$

Color-connection Feynman Rules

• 2007 HELAC: http://helac-phegas.web.cern.ch/helac-phegas/

A. Cafarella, C. G. Papadopoulos and M. Worek, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427 [hep-ph]].

- 2007 HELAC: http://helac-phegas.web.cern.ch/helac-phegas/
- Generate all subprocesses for pp, $p\bar{p}$ collisions, calculate cross sections, produce Les Houches accord file

HELAC TREE ORDER CURRENT VERSION

- 2007 HELAC: http://helac-phegas.web.cern.ch/helac-phegas/
- Generate all subprocesses for *pp*, *pp̄* collisions, calculate cross sections, produce Les Houches accord file
- Very easy to use: just edit the user.inp file and then execute the command ./run.sh

Compulsory information colpar 1 # colliding particles: 1=pp, 2=ppbar, 3=e+einist 35 35 # initial state; enter 0 to sum over initial states finst 35 35 # final state energy 14000 # collision energy (GeV)

For reference, here is the particle numbering: # ve e u d vm mu c s vt ta t b a z w+ w- g h chi f+ f- jet # 1 2 3 4 5 6 7 8 9 10 11 12 31 32 33 34 35 41 42 43 44 100 # The respective antiparticles have a minus sign (for example: positron is -2) # A jet in the final state is denoted by the number 100

Enter here your additional commands if you wish to alterate the default values

- 2007 HELAC: http://helac-phegas.web.cern.ch/helac-phegas/
- Generate all subprocesses for *pp*, *pp* collisions, calculate cross sections, produce Les Houches accord file
- Very easy to use: just edit the user.inp file and then execute the command ./run.sh
- Including kt-reweight for jet matching

- 2007 HELAC: http://helac-phegas.web.cern.ch/helac-phegas/
- Generate all subprocesses for *pp*, *pp̄* collisions, calculate cross sections, produce Les Houches accord file
- Very easy to use: just edit the user.inp file and then execute the command ./run.sh
- Including kt-reweight for jet matching
- Latest: W + 5 jets at LHC

2006 OPP: The method that enables us to think seriously about NLO calculations.
 Based on previous work by Bern, Dixon, Kosower, Britto, Cachazo,

Feng.

Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217 [arXiv:hep-ph/9403226].

R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B **725** (2005) 275 [arXiv:hep-th/0412103]. Complete framework: numerical (fast) & algebraic (stable)

G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763 (2007) 147 [arXiv:hep-ph/0609007].

2006 OPP: The method that enables us to think seriously about NLO calculations.

$$\int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3)$$

$$+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2)$$

$$+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1)$$

$$+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0)$$

$$+ \text{ rational terms}$$

Algebra & Integrals

2006 OPP: The method that enables us to think seriously about NLO calculations.

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

Solving for known values of the loop momentum q

- 2006 OPP: The method that enables us to think seriously about NLO calculations.
- 2007 CutTools: Reduction at the integrand level + rational terms Latest version to appear soon

G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 0803 (2008) 042 [arXiv:0711.3596 [hep-ph]].

G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 0805 (2008) 004 [arXiv:0802.1876 [hep-ph]].

- 2006 OPP: The method that enables us to think seriously about NLO calculations.
- 2007 CutTools: Reduction at the integrand level + rational terms Latest version to appear soon
- AVH_OLO: One-loop scalar integrals including complex masses, IR regulators

- 2006 OPP: The method that enables us to think seriously about NLO calculations.
- 2007 CutTools: Reduction at the integrand level + rational terms Latest version to appear soon
- AVH_OLO: One-loop scalar integrals including complex masses, IR regulators
- 2008 HELAC1L: Based on HELAC to produce virtual one-loop amplitudes

A. van Hameren, C. G. Papadopoulos and R. Pittau, JHEP 0909 (2009) 106 [arXiv:0903.4665 [hep-ph]].

- 2006 OPP: The method that enables us to think seriously about NLO calculations.
- 2007 CutTools: Reduction at the integrand level + rational terms Latest version to appear soon
- AVH_OLO: One-loop scalar integrals including complex masses, IR regulators
- 2008 HELAC1L: Based on HELAC to produce virtual one-loop amplitudes
- 2009 HELAC-Dipoles: Based on HELAC to *automatically* produce Catani-Seymour dipoles, I-operator, KP-operator, arbitrary masses

M. Czakon, C. G. Papadopoulos and M. Worek, JHEP 0908 (2009) 085 [arXiv:0905.0883 [hep-ph]].

Proc	ess	6 D _i	5 D _i	4 D _i	3 D _i	2 D _i	R ₂	СТ	Total
$gg ightarrow t ar{t} b ar{b}$	non-planar		120	268	220	112	51	6	795
	ŦbĐ planar		32	35	40	48	25	2	195
$gg ightarrow t ar{t} gg$ non-planar planar		168	576	480	224	56	50	14	1568
		2	14	40	60	60	34	3	213

A. van Hameren, C. G. Papadopoulos and R. Pittau, JHEP 0909 (2009) 106 [arXiv:0903.4665 [hep-ph]].

$pp ightarrow t ar{t} b ar{b}$						
$uar{u} ightarrow tar{t}bar{b}$						
	ϵ^{-2}	ϵ^{-1}	ϵ^0			
HELAC-1L	-2.347908989000179E-07	-2.082520105681483E-07	3.909384299635230E-07			
$I(\epsilon)$	-2.347908989000243E-07	-2.082520105665445E-07				
$gg ightarrow t ar{t} b ar{b}$						
HELAC-1L	-1.435108168334016E-06	-2.085070773763073E-06	3.616343483497464E-06			
$I(\epsilon)$	-1.435108168334035E-06	-2.085070773651439E-06				

	p_{x}	p_y	p _z	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
t	12.99421901255723	-9.591511769543683	75.05543670827210	190.1845561691092
Ŧ	53.73271578143694	-0.2854146459513714	17.68101382654795	182.9642163285034
Ь	-41.57664370692741	3.895531135098977	-91.94931862397770	100.9874727883170
Б	-25.15029108706678	5.981395280396083	-0.7871319108423604	25.86375471407044

$pp ightarrow VVbar{b}$ and $pp ightarrow VV+$ 2 jets						
$uar{u} o W^+ W^- bar{b}$						
	ϵ^{-2} ϵ^{-1} ϵ^{0}					
HELAC-1L	-2.493916939359002E-07	-4.885901774740355E-07	1.592538533368835E-07			
$I(\epsilon)$	-2.493916939359001E-07	-4.885901774752593E-07				
$gg ightarrow W^+W^-bar{b}$						
HELAC-1L	-2.686310592221201E-07	-6.078682316434646E-07	-2.431624440346638E-07			
$I(\epsilon)$	-2.686310592221206E-07	-6.078682340168020E-07				

	p_x	p_y	pz	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
W^+	22.40377113462118	-16.53704884550758	129.4056091248114	154.8819879118765
W^{-}	92.64238702192333	-0.4920930146078141	30.48443210132545	126.4095336206695
Ь	-71.68369328357026	6.716416578342183	-158.5329205583824	174.1159068988160
Б	-43.36246487297426	10.31272528177322	-1.357120667754454	44.59257156863792

pp ightarrow V+ 3 jets							
$uar{d} o W^+ ggg$							
	ϵ^{-2} ϵ^{-1} ϵ^{0}						
HELAC-1L	-1.995636628164684E-05	-5.935610843551600E-05	-5.323285370666314E-05				
$I(\epsilon)$	-1.995636628164686E-05	-5.935610843566534E-05					
		$uar{u} ightarrow Zggg$					
HELAC-1L	-7.148261887172997E-06	-2.142170009323704E-05	-1.906378375774021E-05				
$I(\epsilon)$	-7.148261887172976E-06	-2.142170009540120E-05					

	p_{x}	p_y	pz	E
и	0	0	250	250
ā	0	0	-250	250
W^+	23.90724239064912	-17.64681636854432	138.0897548661186	162.5391101447744
g	98.85942812363483	-0.5251163702879512	32.53017998659339	104.0753327455388
g	-76.49423931754684	7.167141557113385	-169.1717405928078	185.8004692730082
g	-46.27243119673712	11.00479118171890	-1.448194259904179	47.58508783667868

$pp ightarrow tar{t}+$ 2 jets						
$uar{u} ightarrow tar{t}$ gg						
	ϵ^{-2} ϵ^{-1} ϵ^{0}					
HELAC-1L	-6.127108113312741E-05	-1.874963444741646E-04	-3.305349683690902E-04			
$I(\epsilon)$	-6.127108113312702E-05	-1.874963445081074E-04				
HELAC-1L	-3.838786514961561E-04	-9.761168899507888E-04	-5.225385984750410E-04			
$I(\epsilon)$	-3.838786514961539E-04	-9.761168898436521E-04				

	p _×	p_y	pz	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
t	12.99421901255723	-9.591511769543683	75.05543670827210	190.1845561691092
Ŧ	53.73271578143694	-0.2854146459513714	17.68101382654795	182.9642163285034
g	-41.57664370692741	3.895531135098977	-91.94931862397770	100.9874727883170
g	-25.15029108706678	5.981395280396083	-0.7871319108423604	25.86375471407044

$pp ightarrow bar{b}bar{b}$						
$uar{u} ightarrow bar{b}bar{b}$						
	ϵ^{-2}	ϵ^{-1}	ϵ^0			
HELAC-1L	-9.205269484951069E-08	-2.404679886692200E-07	-2.553568662778129E-07			
$I(\epsilon)$	-9.205269484951025E-08	-2.404679886707971E-07				
		$gg ightarrow bar{b}bar{b}$				
HELAC-1L	-2.318436429821683E-05	-6.958360737366907E-05	-7.564212339279291E-05			
$I(\epsilon)$	-2.318436429821662E-05	-6.958360737341511E-05				

	p_x	p_y	pz	E
u(g)	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
Ь	24.97040523056789	-18.43157602837212	144.2306511496888	147.5321146846735
Б	103.2557390255471	-0.5484684659584054	33.97680766420219	108.7035966213640
Ь	-79.89596300367462	7.485866671764871	-176.6948628845280	194.0630765341365
Б	-48.33018125244035	11.49417782256567	-1.512595929362970	49.70121215982584

HELAC-DIPOLES

 \mathcal{E}_0 - massless emitter, \mathcal{S}_0 - massless spectator, \mathcal{E}_M - massive emitter, \mathcal{S}_M - massive spectator, \mathcal{E}_I - initial state emitter, \mathcal{E}_F - final state emitter, \mathcal{S}_I - initial state spectator, \mathcal{S}_F - final state spectator, \checkmark - check, \blacksquare - does not occur.

	$\mathcal{E}_0/\mathcal{S}_0$	$\mathcal{E}_0/\mathcal{S}_M$	$\mathcal{E}_M/\mathcal{S}_0$	$\mathcal{E}_M/\mathcal{S}_M$		$\mathcal{E}_0/\mathcal{S}_0$	$\mathcal{E}_0/\mathcal{S}_M$	$\mathcal{E}_M/\mathcal{S}_0$	$\mathcal{E}_M/\mathcal{S}_M$
$\mathcal{E}_I/\mathcal{S}_I$					$\mathcal{E}_F/\mathcal{S}_I$				
$\begin{array}{c} g ightarrow gg \ g ightarrow qq \ q ightarrow qg \ q ightarrow qg \ q ightarrow qg \ q ightarrow gq \end{array}$	\$ \$ \$		i		$\begin{array}{c} g ightarrow gg \ g ightarrow qq \ q ightarrow qg \ q ightarrow qg \ q ightarrow qg \ q ightarrow gq \end{array}$	$\langle \langle \rangle \langle \rangle$	ł		
$\mathcal{E}_I/\mathcal{S}_F$					$\mathcal{E}_F/\mathcal{S}_F$				
$\begin{array}{c} g ightarrow gg \ g ightarrow qq \ q ightarrow qg \ q ightarrow qg \ q ightarrow qg \ q ightarrow gq \end{array}$	\$ \$ \$ \$				$\begin{array}{c} g ightarrow gg \ g ightarrow qq \ q ightarrow qg \ q ightarrow qg \ q ightarrow qg \ q ightarrow gq \end{array}$	\$ \$ \$ \$	\checkmark \checkmark \checkmark		✓ ✓ ✓

Table 1: Independent dipole splitting formulae, which need to be tested in order to ensure the correctness of the code. In the splitting description, e.g. $g \rightarrow gg$, the left hand side particle always denotes the virtual state.

HELAC-DIPOLES

Process	Real Emission + Dipoles [msec]	REAL EMISSION [msec]	NR OF DIPOLES
gg ightarrow ggg gg ightarrow gggg gg ightarrow ggggg	3.8 8.5 300	1.0 2.6 42	27 56 100
$u \bar{d} ightarrow W^+ g g g g$	9.3	2.4	56
$gg ightarrow t ar{t} b ar{b} g$	12	2.9	55

Table 2: The CPU time needed to evaluate the real emission matrix element together with all of the dipole subtraction terms per phase-space point (this corresponds to $\alpha_{max} = 1$). All numbers have been obtained on an Intel 2.53 GHz Core 2 Duo processor with the Intel Fortran compiler using the -fast option. • Arbitrary processes QCD+EW

- Arbitrary processes QCD+EW
- Massive and massless external states

- Arbitrary processes QCD+EW
- Massive and massless external states
- Helicity (& color) sampling for partons

- Arbitrary processes QCD+EW
- Massive and massless external states
- Helicity (& color) sampling for partons
- Random helicities for non-partons

- Arbitrary processes QCD+EW
- Massive and massless external states
- Helicity (& color) sampling for partons
- Random helicities for non-partons
- Restrictions on PS α_{\min} and α_{\max}
HELAC-DIPOLES

- Arbitrary processes QCD+EW
- Massive and massless external states
- Helicity (& color) sampling for partons
- Random helicities for non-partons
- Restrictions on PS α_{min} and α_{max}

Dipole Subtraction Configuration	on		
only real emission: only last particle soft/collinear: only divergent dipoles: random polarization for non-pa sign mode (b-both, 1-positive, 2- helicity sum (0-fast, 1-slow,2-fla- events for sampling optimizatio events for sampling optimizatio event increment for sampling u alphaMaxII= alphaMaxII= alphaMaxIF= alphaMaxFI= alphaMaxFI= alphaMaxFI= alphaMaxFI= oligite to included: pi of veto ing jet= color sampling: F	F F Tons: negative) tt MC): n= pdate= 1.00000 1.00000 1.00000 0.0000000 F 50.0000	T 100000 2000 000000 000000 000000 000000 000000	0 00 00000 00000E-006 0000 0000 00000 00000 000E+000
Number of Dipoles: 55 Number of Processes: 7			

Generate w = 1 events (Les Houches format) using HELAC at tree order. Information included: LH + color assignment, helicity. Optimization!

HOW HELAC-NLO WORKS-VIRTUAL

Generate w = 1 events (Les Houches format) using HELAC at tree order. Information included: LH + color assignment, helicity. Optimization!

cevent>

6 81 1 000000E+00 1 726000E+02 7 546772E-03 1 180000E-01

0 0 104 102 0.00000000000000E+00 0.00000000000E+00 -4.885658920243087E+02 4.885658920243087E+02 0.000000000000000E+00 0.000000E+00 9.0000E+00

0 1.648551153938704E+02 -2.128833463956879E+01 1.563411288268662E+01 2.401366022681282E+02 1.72600000000000E+02 0.00000E+00 9.0000E+00 2 103

2 0 102 -6.677109609683933E+01 6.109017946596872E+01 -3.256227583127494E+02 3.794882475549945E+02 1.726000000000000E+02 0.00000E+00 9.0000E+00

2 104 0 4 725480269309031E+00 2 281431584259000E+01 1 753945210216305E+02 1 769351891952198E+02 0 00000000000000E+00 0 000000E+00 9 0000E+00

1 2 0 101 -1 028094995663402E+02 -6 261616066898994E+01 1 345941244084323E+02 1 805717450302747E+02 0 0000000000000E+00 0 000000E+00 9 0000E+00 4 3 4 14 13

9 193930413382987E-08

-1 175027485420859E+00

-3 246111302748730E-01

1863667555432868E+01 -3 562491121497572E+00 -9 077135267012881E+00 -6 153194387677511E+00 -1 970622777463714E+01 -1 717507312227297E+00 -6 433090024792207E+00 -6 899515402964241E+00

-6 580432295368123E+00 -2 321633716694498E-01 2 264652765353805E+01 1 423921666814779E+01 -2 316151832172334E+01 1 257559440674843E+01 4 439749203374159E+00 6 683084353093276E+00

-5.059138841333641E-01 -1.133454593457765E+00 1.833599061114253E+01 -4.015116252979888E+00 1.833599061114253E+01 4.015116252979888E+00 5.059138841333641E-01 -1 133454593457765E+00

2 672004287479594E+00 1 755067698199695E+01 2 615285048432793E+00 -6 256029470621641E+00 -2 615285048432793E+00 -6 256029470621641E+00 -2 672004287479594E+00 -1 755067698199695E+01

pdf 3 605966723564206E-02 1 350916463377768E-01 </event>

HOW HELAC-NLO WORKS-VIRTUAL

{

Do this sum by MC (sample a configuration $\{i\} = 1, 2, 3 \ \{j\} = 1, 2, 3$)

$$\sum_{i\},\{j\}} |\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k}|^2$$

Express in terms of color connections A_{σ}

$$\mathcal{M}_{j_1,j_2,\ldots,j_k}^{i_1,i_2,\ldots,i_k} = \sum_{\sigma} \delta_{i_{\sigma_1},j_1} \delta_{i_{\sigma_2},j_2} \ldots \delta_{i_{\sigma_k},j_k} \mathcal{A}_{\sigma}$$

Very significant reduction in CPU-time

Process	n _{conn}	$\langle n_{conn} \rangle_{MC}$	Ratio
$gg ightarrow b ar b W^+ W^-$	6	1.74	3.5
$gg ightarrow t ar{t} b ar{b}$	24	3.04	7.9
$gg ightarrow tar{t}gg$	120	6.27	19.1

Generate w = 1 events (Les Houches format) using HELAC at tree order. Information included: LH + color assignment, helicity. Optimization!

Calculate using HELAC-1L virtual part for each w = 1 event. Produce a new LH file including virtual corrections. Includes UV renormlization

Generate w = 1 events (Les Houches format) using HELAC at tree order. Information included: LH + color assignment, helicity. Optimization!

Calculate using HELAC-1L virtual part for each w = 1 event. Produce a new LH file including virtual corrections. Includes UV renormlization

The final LH file can now be used to produce any kinematical distribution !

HOW HELAC-NLO WORKS - STABILITY

HOW HELAC-NLO WORKS - STABILITY

HOW HELAC-NLO WORKS-REAL

HELAC-DIPOLES

Generate CS Dipoles and calculate R - D, jet-algorithm, histograms

HOW HELAC-NLO WORKS-REAL

HELAC-DIPOLES

Generate CS Dipoles and calculate R - D, jet-algorithm, histograms

Calculate *I* operator contributions, histograms

HOW HELAC-NLO WORKS-REAL

HELAC-DIPOLES

Generate CS Dipoles and calculate R - D, jet-algorithm, histograms

Calculate *I* operator contributions, histograms

Calculate KP operator contributions, histograms

T. Binoth, G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 0806 (2008) 082 [arXiv:0804.0350 [hep-ph]].

Process	scale μ	Born cross section [fb]	NLO cross section [fb]
ZZZ	$3M_Z$	9.7(1)	15.3(1)
WZZ	$2M_Z + M_W$	20.2(1)	40.4(2)
WWZ	$M_Z + 2M_W$	96.8(6)	181.7(8)
WWW	$3M_W$	82.5(5)	146.2(6)

Table 1: Cross section for the four processes, corresponding to the distributions in Fig 4. Different values of the factorization(renormalization) scale are used for the different processes.

Figure 4: Transverse momentum distribution, as defined in the text, for the four processes $pp \rightarrow VVV$: NLO (solid line) compared with the LO contribution (dashed line).

Costas G. Papadopoulos (Athens)

HELAC

G. Bevilacqua, M. Czakon, C. G. Papadopoulos, R. Pittau and M. Worek, JHEP 0909 (2009) 109 [arXiv:0907.4723 [hep-ph]].

Setup: $\sqrt{s} = 14$ TeV, $p_{T,b} > 20$ GeV, $\Delta R > 0.8$, $|y_b| < 2.5$ $\mu_R = \mu_F = m_t$

Process	$\sigma^{\rm LO}_{\ \ [23,24]} \ \ [{\rm fb}]$	$\sigma^{ m LO}~[{\rm fb}]$	$\sigma^{\rm NLO}_{\ \ [23, 24]} \ [{\rm fb}]$	$\sigma^{\rm NLO}_{\alpha_{max}=1} \; [{\rm fb}]$	$\sigma^{\rm NLO}_{\alpha_{max}=0.01}~[{\rm fb}]$
$q\bar{q} ightarrow t\bar{t}b\bar{b}$	85.522(26)	85.489(46)	87.698(56)	87.545(91)	87.581(134)
$pp \to t \bar{t} b \bar{b}$	1488.8(1.2)	1489.2(0.9)	2638(6)	2642(3)	2636(3)

Table 1: Cross sections for $pp \to t\bar{t}b\bar{b} + X$ at the LHC at LO and NLO for the scale choice $\mu_F = \mu_R = m_t$, in comparison with the results of Refs. [23, 24]. The statistical errors are quoted in parentheses.

$$K = 1.77$$

Figure 3: Distribution of the invariant mass m_{bb} of the bottom-anti-bottom pair (a), distribution in the transverse momentum $p_{T_{bb}}$ of the bottom-anti-bottom pair (b), distribution in the rapidity y_{bb} of the bottom-anti-bottom pair (c) and distribution in the transverse momentum $p_{T_{b}}^{*}$ of the bottom quark (d) for $pp \rightarrow t\bar{t}bb + X$ at the LHC at LO (blue dashed line) and NLO (red solid line). All distributions have been obtained with $c_{mass} = 0.01$.

HELAC

"The SM and NLO multileg working group: Summary report," arXiv:1003.1241 [hep-ph].

With realistic cuts on $b\bar{b}$ $\mu_R = \mu_F = m_t + m_H/2$

$$\sigma_{\rm LO}^{\rm S} = (150.375 \pm 0.077) \text{ fb}.$$

At the NLO we obtain

$$\begin{split} \sigma_{\rm NLO}^{\rm S} &= (207.473 \pm 0.232) \; {\rm fb} \quad {\rm for} \;\; \alpha_{\rm max} = 0.01 \; , \\ \sigma_{\rm NLO}^{\rm S} &= (207.268 \pm 0.150) \; {\rm fb} \quad {\rm for} \;\; \alpha_{\rm max} = 1 \end{split}$$

K = 1.38

Costas G. Papadopoulos (Athens)

HELAC

CERN 2010 23 / 40

$pp \rightarrow t\bar{t} + 2$ JETS

G. Bevilacqua, M. Czakon, C. G. Papadopoulos and M. Worek, arXiv:1002.4009 [hep-ph]. Setup: $\sqrt{s} = 14$ TeV, $p_{T,i} > 20$ GeV, $\Delta R > 1$, $|y_i| < 4.5$

$$\sigma^{\it NLO}_{tar{t}jj} = (106.94\pm0.17) {
m pb}$$
 $K=0.89$

FIG. 2: Scale dependence of the total cross section for $pp \rightarrow t\bar{t}jj + X$ at the LHC with $\mu_R = \mu_F = \xi \cdot \mu_0$ where $\mu_0 = m_t$. The blue dotted curve corresponds to the LO, the red solid to the NLO result whereas the green dashed to the NLO result with a jet veto of 50 GeV.

 Complete software for NLO-QCD at LHC: LO (lhc)+ Virtual(lhc) + Real(lhc ?) lhc=Les Houches Compatible

- Complete software for NLO-QCD at LHC: LO (lhc)+ Virtual(lhc) + Real(lhc ?) lhc=Les Houches Compatible
- Speed, stability, efficiency issues under control Improvements in PS for real corrections

- Complete software for NLO-QCD at LHC: LO (lhc)+ Virtual(lhc) + Real(lhc ?) lhc=Les Houches Compatible
- Speed, stability, efficiency issues under control Improvements in PS for real corrections
- Provide NLO calculator for all processes 2 → n, where 4(5) out of n, i.e. 6(7) particles attached to the loop MCFM-type approach ?

For those who are interested in more details

=

HELAC COLOR TREATMENT

$$\mathcal{M}_{j_{2},\dots,j_{k}}^{a_{1},i_{2},\dots,i_{k}} t_{i_{1}j_{1}}^{a_{1}} \rightarrow \mathcal{M}_{j_{1},j_{2},\dots,j_{k}}^{i_{1},i_{2},\dots,i_{k}}$$
$$\mathcal{M}_{j_{1},j_{2},\dots,j_{k}}^{i_{1},i_{2},\dots,i_{k}} = \sum_{\sigma} \delta_{i_{\sigma_{1}},j_{1}} \delta_{i_{\sigma_{2}},j_{2}} \dots \delta_{i_{\sigma_{k}},j_{k}} A_{\sigma}$$
$$\sum_{\{i\},\{j\}} |\mathcal{M}_{j_{1},j_{2},\dots,j_{k}}^{i_{1},i_{2},\dots,i_{k}}|^{2}$$
$$\sum_{\sigma,\sigma'} \mathcal{A}_{\sigma}^{*} \mathcal{C}_{\sigma,\sigma'} \mathcal{A}_{\sigma'}$$
$$\mathcal{C}_{\sigma,\sigma'} \equiv \sum_{\{i\},\{j\}} \delta_{i_{\sigma_{1}},j_{1}} \delta_{i_{\sigma_{2}},j_{2}} \dots \delta_{i_{\sigma_{k}},j_{k}} \delta_{i_{\sigma_{1}'},j_{1}} \delta_{i_{\sigma_{2}'},j_{2}} \dots \delta_{i_{\sigma_{k}'},j_{k}}$$

 $(x_1, y_1) \dots (x_n, y_n)$

where y_i take the values $\{1, 2, ..., n_l\}$ if *i* is a gluon or an outgoing quark (incoming anti-quark) otherwise $y_i = 0$, whereas x_i take the values $\{\sigma_1, \sigma_2, ..., \sigma_{n_l}\}$ if *i* is a gluon or an incoming quark (outgoing anti-quark) otherwise $x_i = 0$. So for instance for a $q\bar{q} \rightarrow gg$ process, $n_l = 3$ and a possible color connection is given by (3,0)(0,1)(1,2)(2,3)

HELAC COLOR TREATMENT

whereas for $gg \rightarrow ggg$, $n_l = 5$ and a possible color connection is given by (2,1)(3,2)(4,3)(5,4)(1,5)

$$\mathcal{C}_{\sigma,\sigma'} = \mathit{N}_{c}^{m(\sigma,\sigma')}$$

where $m(\sigma, \sigma')$ count the number of common cycles of the two permutations.

Costas G. Papadopoulos (Athens)

HELAC COLOR TREATMENT - 1 LOOP

HELAC

16

HELAC R2 TERMS

$$\underbrace{\frac{p_1}{p_1,a_1}}_{\mu_1,a_1} \underbrace{\frac{p_2}{p_3}}_{\mu_3,a_3} \underbrace{\frac{p_2}{p_3}}_{\mu_3,a_3} \underbrace{\frac{p_2}{q_3}}_{\mu_3,a_3} \left(\frac{7}{4} + \lambda_{HV} + 2\frac{N_f}{N_{col}}\right) f^{a_1a_2a_3} V_{\mu_1\mu_2\mu_3}(p_1,p_2,p_3)$$

HELAC R2 TERMS

Costas G. Papadopoulos (Athens)

TNEO		, Ima	× • ·		5 10			1			-								
INFO	COL	OR 1	out	of	6	18	1.0	1015	1.	13.1	200								
INFO	1	12	35	7	1	1	4	-4	3	8	4	4	0	0	0	0	1	2	
INFO	1	48	35	8	1	1	16	-8	5	32	8	6	ō	õ	Ō	Ō	1	2	
INFO	2	14	-3	9	-	i	12	35	ž	2	-3	2	õ	õ	õ	1	i	2	
INFO	2	14	-3	9	0	1	12	35	7	2	-3	2	0	0	0	2	1	2	
INFO	2	28	-8	10	80	1	12	35	7	16	-8	5	Ó	Ó	Ó	1	1	2	
INFO	2	28	-8	10	0	1	12	35	7	16	-8	5	0	0	0	2	1	2	
INFO	3	44	8	11	1	1	12	35	7	32	8	6	0	0	0	1	1	2	
INFO	3	44	8	11	0	1	12	35	7	32	8	6	0	0	0	2	1	2	
INFO	2	50	-3	12	1	1	48	35	8	2	-3	2	0	0	0	1	1	2	
INFO	2	50	-3	12	0	1	48	35	8	2	-3	2	0	0	0	2	1	2	
INFO	2	52	-4	13	1	1	48	35	8	4	-4	3	0	0	0	1	1	2	
INFO	2	52	-4	13	0	1	48	35	8	4	-4	3	0	0	0	2	1	2	
INFO	3	56	4	14	1	1	48	35	8	8	4	4	0	0	0	1	1	2	
INFO	3	56	4	14	0	1	48	35	8	8	4	4	0	0	0	2	1	2	
INFO	1	60	35	15	211	4	4	-4	3	56	4	14	0	0	0	0	1	2	
INFO	1	60	35	15	2	4	16	-8	5	44	8	11	0	0	0	0	1	2	
INFO	1	60	35	15	3	4	28	-8	10	32	8	6	0	0	0	0	1	2	
INFO	1	60	35	15	4	4	52	-4	13	8	4	4	0	0	0	0	1	2	
INFO	2	62	-3	16	633 17	3	12	35	2	50	-3	12	0	0	0	1	1	2	
INFO	2	62	-3	16	0	3	12	35	7	50	-3	12	0	0	0	2	1	2	
INFO	2	62	-3	16	2	3	48	35	8	14	-3	9	0	0	0	1	1	2	
INFO	4	62	-3	16	U	3	48	35	8	14	-3	9	U	U	U	4		2	
INFO	2	62	-3	16	3	3	60	35	15	2	-3	2	0	0	0	1	1	2	
INFO	2	62	-3	16	U	3	60	35	15	2	-3	2	U	U	U	2	10	2	
TNEO	COL	AD 2	0114	~ 4	c														
TNEO	LOL	12	25	OT	0 1	-	4	4	2	•	1	4	•	•	0	0	-		
TNEO	-	10	25	6		-	16	_4	5	22	4	4	0	0	0	0		-	
THE	11 - 1 A	70	22	0	1000	19.00	10	-0	Э	36	0	0						1000	

INFO	===					===						==	27.0	12-12-17			Sec.2	the march of the second
INFO	COL	OR 4	out	t of	6													
INFO	num	ber	of r	ums	143													
INFO	NUM	1	of	143	10													
INFO	3	96	8	9	1	1	64	35	7	32	8	6	0	0	0	1	1	2
INFO	3	96	8	9	0	1	64	35	7	32	8	6	0	0	0	2	1	2
INFO	1	112	35	10	1	1	16	-8	5	96	8	9	0	0	0	0	1	
INFO	3	120	4	11	1	1	112	35	10	8	4	4	0	0	0	1	1	1
INFO	3	120	4	11	0	1	112	35	10	8	4	4	0	0	0	2	1	
INFO	1	124	35	12	1	1	4	-4	3	120	4	11	0	0	0	0	1	1
INFO	2	126	-3	13	1	1	124	35	12	2	-3	2	0	0	0	1	1	1
INFO	2	126	-3	13	0	1	124	35	12	2	-3	2	0	0	0	2	1	1
INFO	2	254	-3	14	1	1	128	35	8	126	-3	13	0	0	0	1	1	2
INFO	2	254	-3	14	0	1	128	35	8	126	-3	13	0	0	0	2	1	2
INFO	6	32	16	8	4	2	1	35	8	35	4	35	-3	0	0	0	3	1 1 Martin Carlos and States
INFOYY	1	1																
INFO	NUM	2	of	143	10													
INFO	3	96	8	9	1	1	64	35	7	32	8	6	0	0	0	1	1	1
INFO	3	96	8	9	0	1	64	35	7	32	8	6	0	0	0	2	1	1
INFO	1	112	35	10	1	1	16	-8	5	96	8	9	0	0	0	0	1	a la company and a second
INFO	3	120	4	11	1	1	112	35	10	8	4	4	0	0	0	1	1	
INFO	3	120	4	11	0	1	112	35	10	8	4	4	0	0	0	2	1	1
INFO	1	124	35	12	1	1	4	-4	3	120	4	11	0	0	0	0	1	2
INFO	2	126	-3	13	1	1	124	35	12	2	-3	2	0	0	0	1	1	2
INFO	2	126	-3	13	0	1	124	35	12	2	-3	2	0	0	0	2	1	2
INFO	2	254	-3	14	1	1	128	35	8	126	-3	13	0	0	0	1	1	1
INFO	2	254	-3	14	0	1	128	35	8	126	-3	13	0	0	0	2	1	1
INFO	6	32	16	8	4	2	1	35	8	35	4	35	-3	0	0	0	3	el grade gladen gl
INFOY		1																
INFO	NUM	3	of	143	10													
and the second second second	_			-	-		0.4	25		10	0		0	0	0			A CONTRACT OF A

<u>.</u>	3 🖻		3 💌	6	{																
INFO	NUM	127	of	143	15	199	1.	22	2.22	1970	7220	2012	27.6	2889	120	1200	Ser.23	2.82	THE CA	02802	Stratel.
INFO	1	48	35	9	1	1	16	-8	5	32	8	6	0	0	0	0	1	1			
INFO	3	112	3	10	1	1	48	35	9	64	3	7	0	0	0	1	1	1			
INFO	3	112	3	10	0	1	48	35	9	64	3	7	0	0	0	2	1	1			
INFO	1	12	35	11	1	1	4	-4	3	8	4	4	0	0	0	0	1	1			
INFO	1 :	240	35	12	1	1	128	-3	8	112	3	10	0	0	0	0	-1	1			
INFO	2	242	-3	13	1	1	240	35	12	2	-3	2	0	0	0	1	1	1			
INFO	2	242	-3	13	0	1	240	35	12	2	-3	2	0	0	0	2	1	1			
INFO	3	248	4	14	1	1	240	35	12	8	4	4	0	0	0	1	1	1			
INFO	3	248	4	14	0	1	240	35	12	8	4	4	0	0	0	2	1	1			
INFO	1 :	252	35	15	1	2	4	-4	3	248	4	14	0	0	0	0	1	1			
INFO	4	252	35	15	2	2	12	35	11	240	35	12	0	0	0	0	1	1			
INFO	2	254	-3	16	1	2	12	35	11	242	-3	13	0	0	0	1	1	1			
INFO	2 :	254	-3	16	0	2	12	35	11	242	-3	13	0	0	0	2	1	1			
INFO	2	254	-3	16	2	2	252	35	15	2	-3	2	0	0	0	1	1	1			
INFO	2	254	-3	16	0	2	252	35	15	2	-3	2	0	0	0	2	1	1			
INFO	2	48	15	3	3	0	0	0	0	0	0	0	0	0	0	0	2	5			
INFOY	Y	5	6.	18 M																	
INFO	NUM	128	of	143	11																
INFO	1	12	35	?	1	1	4	-4	3	8	4	4	0	0	0	0	1	1			
INFO		48	35	8	1	1	16	-8	5	32	8	6	0	0	0	0		1			
INFO	2	28	-8	9	1	1	12	35	7	16	-8	5	0	0	0	1	1	1			
INFO	2	28	-8	9	0	1	12	35	7	16	-8	5	0	0	0	2	1	1			
INFO	3	56	4	10	1	1	48	35	8	8	4	4	0	0	0	1	1	1			
INFO	3	56	4	10	0	1	48	35	8	8	4	4	0	0	0	2	1	1			
INFO	1	60	35	11	1	3	4	-4	3	56	4	10	0	0	0	0	1	1			
INFO	4	60	35	11	2	3	12	35	7	48	35	8	0	0	0	0	1	1			
INFO	1	60	35	11	3	3	28	-8	9	32	8	6	0	0	0	0	1				
INFO	25	62	-3	12	1	1	60	35	11	2	-3	2	0	0	0	1	1	1			
INFO	25	62	-3	12	0	1	60	35	11	2	-3	2	0	0	0	2	1	1			
INFO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1			
INFOY	Y	1	25-	200	125																
INFO	NUM	129	of	143	12	19	50.0	10.00	50	100	1.5.1	1.4	The se	10,000	1		1. 174	-			
INFO	23	12	35	7	1	1	4	-4	3	8	4	4	0	0	0	0	1	1			
INFO	1	48	35	8	1	1	16	-8	5	32	8	6	0	0	0	0	1	201			