Introduction							
		Εr			÷.	n	

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Forward physics in Herwig++

Peter Richardson, Pavel Ruzicka

March 29, 2010

Forward physics at LHC

- Forward physics: processes in which particles are created at small polar angles i.e. high rapidities.
- LHC plans to have rich forward physics program:
 - ATLAS: LUCID, ZDC, ALFA, AFP
 - CMS: CASTOR, ZDC, FP420
 - TOTEM
- Highlights in forward physics which are going to be studied:
 - Total cross section and elastics scattering
 - Soft & Hard diffraction
 - Exclusive production of new mass states
 - Low-x Dynamics
 - Two-photon interactions and peripheral collisions
 - New Forward Physics phenomena

Introduction	Two Photon physics	Hard diffraction	Summary & Outlook
Introduction			

- Herwig++ has been being extended for some of the most interesting forward physics processes:
 - Two photon physics
 - Hard diffraction: Single Diffraction, Double Pomeron Exchange and Central Exclusive Production

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ThePEG structure

- Herwig++ is based on thePEG framework: the Toolkit for High Energy Physics Event Generation.
- ThePEG provides all the infrastructure that does not depend on the physics models. Each HERWIG++ class inherits from ThePEG abstract class and provides specific model implementation.
- ThePEG has repository which keeps all the building blocks of the EventGenerator and connections between them (as Matrix elements, PDF functions, hadronization handlers, beam properties etc.).
- User setups all the building blocks and their properties easily together via the text inputfile.

Two photon physics

Budnev flux:

$$dN = \frac{\alpha}{\pi} \frac{dE_{\gamma}}{E_{\gamma}} \frac{dQ^2}{Q^2} \left[(1 - \frac{E_{gamma}}{E})(1 - \frac{Q^2}{Q^2})F_E + \frac{E_{\gamma}^2}{E^2}F_M \right]$$
$$F_M = G_M^2$$
$$F_E = (4m_p^2 G_E^2 + Q^2 G_M^2)/(4m_p^2 + Q^2)$$
$$G_E^2 = G_M^2/\mu_p^2 = (1 + Q^2/Q_0^2)$$

where $\mu_p^2=7.78$ and $\mathit{Q}_0^2=0.71~\mathrm{GeV}^2$

▲□▶▲□▶▲□▶▲□▶ = のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Two photon physics

- Budnev flux implemented.
- Available SM processes: dilepton production, W boson production, dijet production
- Extension for beyond standard model processes can be easily done.
- Two photon physics validated against FPMC (Forward Physics Monte Carlo, www.cern.ch/fpmc, arXiv:0903.3861), see next slides.

Distributions $pp \longrightarrow p + \gamma\gamma + p \longrightarrow \underline{p + \mu\mu + p}$

E 990

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Cross Section $pp \longrightarrow p + \gamma\gamma + p \longrightarrow p + \mu\mu + p$

p _T	Herwig++	FPMC
3 GeV	47.2 pb	48.9 pb
5 GeV	13.2 pb	13.5 pb
10 GeV	2.20 pb	2.22 pb
30 GeV	$1.09 imes10^{-2}$ pb	$1.09 imes10^{-2}$ pb
50 GeV	$2.48 imes10^{-3}$ pb	$2.49 imes10^{-3}~{ m pb}$

Cross sections of dimuon production for various p_T cuts at $\sqrt{s} = 14$ TeV with $x_{min} = 0$, $x_{max} = 1$ and $Q^2 = 2$ GeV²

Inclusive diffraction: Ingelman-Schlein model

• Cross section:

$$\sigma(PP \to PPXY) = \sum_{i,j} \iint dx_1 dx_2 f_i^D(x_1, Q_1^2) f_j^D(x_2, Q_2^2) \hat{\sigma}(x_1, Q_1^2, x_2, Q_2^2)$$
$$f_i^D(x, Q^2) = f_{\mathbb{P}}(t, x_P) f_i^{\mathbb{P}}(Q^2, x) + f_{\mathbb{R}}(t, x_R) f_i^{\mathbb{R}}(Q^2, x)$$

• Pomeron/Reggeon flux: $f_{\mathbb{P}}(t, x_P) = Ae^{\beta_P t} / x^{2(\alpha(0) - \alpha' t) - 1}$

• Pomeron/Reggeon structure function: $f_i^{\mathbb{P}}(Q^2, x)$

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

	۲r				n	
		9				

Current implementation

- Sum of pomeron and reggeon contributions implemented.
- Default value of pomeron and reggeon fluxes are given by the PDF fits. They can be also varied by user.
- Pomeron structure functions from HERA measurement: 2006 (fit A and fit B), 2007.
- The PDFs can be freezed or extrapolated outside of their boundaries.
- In case of reggeon, pion structure function is used.
- Pomeron composed either from the valence gluons (default option) or from qq pairs.
- Reggeon has only $q\bar{q}$ structure which is consistent with pion.
- Gap survival probability is not included.
- Comparison was done with POMWIG (the most established event generator for hard diffraction, http://www.pomwig.com).

Distributions $pp \longrightarrow p + dijet + p$

Distributions $pp \longrightarrow p + dijet + p$

Hard diffraction

Summary & Outlook

Distributions $pp \longrightarrow p + dijet + p$

 Feature in POMWIG: proton has mass of the electron → wrong rapidity distributions of survived protons, influence on the t distribution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Cross Section $pp \longrightarrow p + dijet + p$

p _T	Herwig++	Pomwig
10 GeV	$9.63 imes10^4~ m nb$	$9.56 imes10^4$ nb
20 GeV	$7.49 imes10^3~ m nb$	$7.49 imes10^3$ nb
30 GeV	$1.55 imes10^3~ m nb$	$1.54 imes10^3$ nb
40 GeV	$2.83 imes10^2$ nb	$2.81 imes 10^2$ nb

Cross sections of dijet production for various p_T cuts at $\sqrt{s} = 14$ TeV with $x_{min} = 10^{-7}$, $x_{max} = 1$ H1 2006 Fit A.

	tr				n	

Summary

- Framework for two photon physics was implemented.
- It provides dilepton and W production.
- More processes can be added if necessary.
- Tested against FPMC.
- \bullet Following hard diffraction processes will be available in next ${\sf Herwig}{++}$ release :
 - Single Diffraction: dijet production
 - Double Pomeron Exchange: dijet production, Higgs production
- Tested against POMWIG.

Introduction	Two Photon physics	Hard diffraction	Summary & Outlook
Outlook			

• Finish validation and final tunning of the two photon physics and hard diffraction.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Work on CEP has been started.
- KMR model will be used for CEP.
- Higgs and dijet production will be implemented first.