Diffraction Modeling in EPOS

Tanguy Pierog, K. Werner, S. Porteboeuf

Institut für Kernphysik, Karlsruhe, Germany

MC4LHC Readiness Workshop, CERN March the 29th 2010

Outline

- The EPOS model
- Diffraction in EPOS
 - Cross Section
 - Low mass diffraction
 - High mass diffraction
- Remnants in EPOS
- Data comparison
 - Overview
 - Diffraction

The EPOS Model

EPOS* is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC)

MC4LHC Readiness – March 2010

*T.Pierog, S. Porteboeuf and K. Werner

T. Pierog, KIT - 3/23

EPOS : History

- Evolution of models by K. Werner et al. :
 - VENUS (93) : soft physic
 - NEXUS 2 (00): first realization of Parton-Based Gribov-Regge Theory (PBGRT) with soft, semi-hard and hard Pomerons

No screening

 NEXUS 3.97 (03) : enhanced diagrams in PBGRT and new remnant treatment.

No Cronin effect and problems at high energy

- EPOS (06) : PBGRT + remnants + Effective treatment of higher order effect and high density effect + new diffraction ...
 - Simplified collective effect
 - Only min-bias

➡ EPOS 2 : 2010 ?

- High mass diffraction
- Real event by event hydro calculation (includ. pp)
- Selection of hard processes (UE)

Gribov-Regge Based Models

Using Gribov-Regge (GR) : cross section from optical theorem :

$$\sigma_{ine}(\sqrt{s}) = \int d^2 b (1 - \exp(-G(\sqrt{s}, b)))$$

where G(energy, impact parameter) = elementary interaction

Multiple elementary scattering

 Probability for the number of interaction per event

Successful description of hadronic cross-sections But Energy conservation NOT considered between the elementary interactions G

No possibility to deduce directly particle production !

Particle Production in GR based Models

- Number of strings from GR
 - No energy conservation
- Energy sharing
 - Not consistent with cross-section
- String fragmentation
 - Proper energy conservation

Link between cross-section and particle production lost !

Parton-Based Gribov-Regge Therory* (PBGRT) developed to solve the problem : same formalisme for cross section and particle production used first in NEXUS and now in EPOS

* H.J. Drescher et al., Phys.Rep. 350:93-289 (2001)

Parton-Based Gribov-Regge Theory

- Energy sharing at the cross section level
 - Energy shared between cut and uncut diagrams
 - Reduced number of elementary interactions
 - Generalization to (h)A-B
 - Particle production from momentum fraction matrix (Markov chain metropolis)

T. Pierog, KIT - 7/23

MC4LHC Readiness – March 2010

Diffraction in PBGRT

Diffraction from an additional diagram

- Same form as soft (Regge pole) but with different amplitude and width
- Low mass and high mass diffraction from the same diagram

Parameters extracted from single diffractive (SD) cross-section

Events with only "diff" type diagrams are diffractive

+

Additional excitation probability for remnants (~75%)

Low Mass Diffraction

Diffractive event = event with only cut diff. diagrams

- Multiple cut-diff diagrams possible
- For each cut-diff diagram probability P_{dif} not to excite remnant
 - More cut-diff = more excitation : (1-Pⁿ_{dif})
 - Important in pA
- No particle production directly from diagram

High Mass Diffraction

Additional multiplicity contribution in ND events

Work in progress

Diffraction in EPOS

Remnants in EPOS

Remnants

High mass remnants in EPOS:

- from both diffractive or inelastic scattering
- excited state with $P(M) \sim 1/(M^2)^{\alpha}$
- very large contribution at low energy
- forward region at high energy
- depending on quark content and mass (excitation):
 - resonance
 - string
 - droplet (if #q>3)
 - string+droplet

Quark Transfer in Remnants

No a priori for string ends (SE) of parton ladder

- No "first string" with valence quarks : all strings equivalent
 - Sea quarks pair production for string-ends
- Valence diquark transfer from remnant to SE can be controlled
 - Baryon stopping
- Wide range of excited remnants (from light resonances to heavy quark-bag)
- Probability to have diquark as string ends

Properties of Free Remnants

Valence quark not necessarily connected to parton ladder :

- Necessary to have $a\Omega/\Omega < 1$ (NA49 data)
- Very broad remnant distribution
- Can be used to describe effective enhanced diagrams (higher mass)
- Very important for Cosmic Ray (leading particle)

Parameters

Data used to constrain parameters:

- string fragmentation : e+e- data,
- hard Pomeron : DIS data,
- soft Pomeron and vertices : pp,πp,Kp, pA cross sections
- diffraction : pp low energy diffraction and multiplicity distributions
- excitation functions : multiplicity in pp from SPS to Tevatron,
- string ends and remnants : NA49 data
- collective and screening effects : RHIC
- One set of parameters for all energies
 - not designed to be tuned by users

Results Overview (1)

MC4LHC Readiness – March 2010

T. Pierog, KIT - 15/23

Results Overview (2)

MC4LHC Readiness – March 2010

T. Pierog, KIT - 16/23

Results Overview (3)

MC4LHC Readiness – March 2010

```
T. Pierog, KIT - 17/23
```

> vs multiplicity

- Since 2007 collective effects in EPOS for any system :
 - Minimum energy density needed to start formation of "core clusters"
 - Microcanonical decay with additional flow
 Phys.Rev.Lett.98:152301,2007.
 - Flow parametrized from SPS HI, RHIC HI and Tevatron ap-p

• More development on collective effects in pp from other groups : D'Enterria et al. (arXiv:0910.3029), Solana et al. (arXiv:0911.4400), Chaudhuri (arXiv:0912.2578), ...

Proton Xf Distribution

Proton Xf Distribution

Leading proton

- Tests from 100 GeV lab to 300 GeV cms
- Very forward proton from ND events

E_{lab}=158 GeV NA49 data

LHC

Scaling violation at LHC

Different proportion for SD,DD and ND

		PYT	HIA		РНОЈЕТ				-
Energy	0.9 TeV		2.36 TeV		0.9 TeV		2.36 TeV		-
	Frac.	Sel. Eff.	Frac.	Sel. Eff.	Frac.	Sel. Eff.	Frac.	Sel. Eff.	
SD	22.5%	16.1%	21.0%	21.8%	18.9%	20.1%	16.2%	25.1%	-
DD	12.3%	35.0%	12.8%	33.8%	8.4%	53.8%	7.3%	50.0%	
ND	65.2%	95.2%	66.2%	96.4%	72.7%	94.7%	76.5%	96.5%	10
NSD	77.5%	85.6%	79.0%	86.2%	81.1%	90.5%	83.8%	92.4%	_

EPOS								
Energy	0.9	TeV	2.36 TeV					
	Frac.	Sel. Eff.	Frac.	Sel. Eff.				
SD	13,7%	22,3%	12,4%	27,4%				
DD	18,1%	71,3%	16,0%	73,8%				
ND	68,2%	88,4%	71,6%	90,9%				
NSD	86,3%	84,8%	87,6%	87,8%				

Much more SD events pass the CMS trigger !

MC4LHC Readiness – March 2010

T. Pierog, KIT - 21/23

Check with Cosmic Rays

Informations from air shower development constrain forward region (remnant)

- Data from KASCADE (hadrons)
- Data from Pierre Auger Observatory (longitudinal development, muon number)

Summary

EPOS model based on Parton-Based Gribov Regge Theory

- Full coherence between inelastic cross section and particle production with MPI
- Both soft and hard physics
- Consistent treatment of diffraction (low and high mass)
- Careful treatment of remnants

EPOS 1.99 available in ALICE and ATLAS simulation software :

- Good description of min bias events up to 1.8 TeV (<10% error)</p>
- Tested with cosmic ray experiments
- Collective effects done in an effective way

On-going developments : EPOS 2

- Real hydrodynamical evolution
- Selection of hard processes
- Both at the same time : underlaying events

New LHC data

New LHC data : pt (CMS)

<vs multiplicity : EPOS 1.99 (2009)</p>

- Predictions of current EPOS version :
 - Not real hydro : effective treatment (prev. slide)
 - Already collective effect visible at 900 GeV
 - Good agreement with preliminary LHC data

Initial Conditions AuAu@RHIC

Initial Conditions ap-p@Tevatron

EoS

Hirano: QG & resonance gas => 1st order PT, PCE, $\mu_B = \mu_S = \mu_Q = 0$

- **Q3F:** QG & "complete" resonance gas => 1st order PT, excl volume correction, μ_B, μ_S, μ_Q considered, parameters as in Spherio
- **X3F:** crossover : $p = p_Q + \lambda (p_H p_Q), \ \lambda = \exp(-\frac{T Tc}{\delta})\theta(T T_c) + \theta(T_c T)$

"data": Y. Aoki, Z. Fodor, S.D. Katz , K.K. Szabo, JHEP 0601:089,2006

AuAu : Kaon

AuAu : Lambda

AuAu : Di-hadron correlation

p-p: Other Possible Observable

Pt distribution CDF ap-p@1.8 TeV with Hydro

Pt distribution CDF ap-p@1.8 TeV without Hydro

