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Outline

Introduction to MC tuning

Genetic Algorithms and their application to MC 
tuning 

PYTHIA tune for minimum bias events

Current Status

Conclusions
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Introduction
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●Compare samples and data
●Select new parameters in parameter 
hypercube
●Repeat until satisfied with results

Ultimate goal is to have a perfect description at each bin of 
all data histograms

Parameters
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Manual Tuning

 Compare distributions by 
eye.
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Manual Tuning

 Compare distributions by 
eye.

Alter parameters by 
intuition and experience.

Only real experts can 
produce good results.

Experts might disagree on 
what is a good description.
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Automatic Tuning

 Define a measure (F) for 
goodness of distributions 
(typically chi-square).

F MC ,DATA
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Automatic Tuning

 Define a measure (F) for 
goodness of distributions 
(typically chi-square).

Try to minimize F() by 
changing the parameters

Randomly 

Using a minimization 
package 

F MC ,DATA

Takes too long time, impractical.

Prone to local minima and 
takes a long time.

Alternative approach;
use Genetic Algorithms 

for searching the 
minimum!
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Genetic Algorithms
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Genetic Algorithms

Genetic Algorithms are based 
on the evolutionary principles 
observed in nature.
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Genetic Algorithms

Genetic Algorithms are based 
on the evolutionary principles 
observed in nature.

Potential solution candidates, 
called “individuals”, are tested 
for fitnessfitness.

Fitter individuals procreate 
more, creating children 
containing their genes for the 
next generation.

Genetic Algorithms are very 
good at search and 
optimization problems.
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 Using GA for MC tuning 
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Fitness is determined by one of three different functions 

F= ∑
i=FirstBin

LastBin Datai−MC i
2

Datai
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i=FirstBin

LastBin Datai−MC i
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〈Data〉×Datai
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Data
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Sensitive to tails
Compromise between

peaks and tails 2 Function

Parameters
Generate Samples

F MC , DATA

Genetic AlgorithmGenetic Algorithm
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 Using GA for MC tuning 
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〈Data〉×Datai
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LastBin Datai−MC i
2

Data
2

Sensitive to tails
Compromise between

peaks and tails 2 Function

Parameters
Generate Samples

F MC , DATA

Genetic AlgorithmGenetic Algorithm

Sample generation 
takes some time
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PYTHIA tune for 
Minimum Bias
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PYTHIA 8 Tune

UA5 200GeV
|η|<3.0

UA5 900GeV
|η|<5.0

Charged Particle Multiplicity 
distribution is significantly 
improved. Low multiplicity 
region is not well described by 
the model. 

Genetic Algorithm tune(blue) has 
slightly better description than the 
tune from Peter Skands(green). 
Other distributions are similar.
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CDF 1960GeV
|η|<1.0, p

T
>0.4

Mean p
T
 distribution agreement is 

also better than default. Low 
multiplicity region is slightly off 
from the measurement.

No significant difference between 
the tunes in p

T
 distribution

CDF 1960GeV
|η|<1.0, p

T
>0.4
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Slight improvement on the 
description of p

T
 of Z0 in Drell-Yan 

events at 1800 and 1960 GeV

D0 1960GeV
Drell-Yan Z0 p

T

CDF 1800GeV
Drell-Yan Z0 p

T
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CMS (NSD-corrected) 
charged particle

 pseudorapidity distributions

900 GeV

2360 GeV

CMS dN/dη data

Transverse-momentum and pseudorapidity 
distributions of charged hadrons in pp 
collisions at              and 2.36 TeV

CMS Collaboration
arXiv:1002.0621v2

 s=0.9
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PYTHIA 6 and 8 interfaces are 
ready. It is easy to extend it to 
other generators.

Current Status
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Most minimum bias 
distributions are implemented. 
It can be extended or replaced 
with another library.

Current Status
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There are plans to use grid 
rather than clusters

Current Status
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Current Status

More details in my thesis. More details in my thesis. 
It will be public soon.It will be public soon.
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Conclusions

Genetic Algorithms can be used in MC tuning and 
GAMPI provides a way of doing it  automatically.

It uses exact generator response; no systematic 
errors from the method, no approximations.

Shape of the fitness (hyper-)surface is not an issue.

Modular approach makes it easy to adapt to other 
generators and analyses.

Applied for a repository in HepForge, waiting for it 
to make the code public.
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Thank you!
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Procreation

Parameter X

P
ar
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 Y

Creation of new childrenCreation of new children

Selected randomly 
proportional to their 
fitness/goodness
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Procreation

Parameter X

P
ar

am
et

er
 Y

Creation of new childrenCreation of new children

Child is generated at 
a random point on 
the line segment 
connecting parents 
with some extra in 
both ends.
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Procreation

Parameter X

P
ar

am
et

er
 Y

Creation of new childrenCreation of new children

Child is randomly 
shifted with a given 
probability within a 
circle of predefined 
radius
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Data Sets
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Center-of-Mass evolution

Mean p
t

Central charged 
particle pseudorapidity
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 Trigger selected dN/dη evolution

CMS selection
A particle with E>3Gev
in 2.9<|η|<5.2, both 
hemispheres

UA1 Selection,
A charged particle in 
1.5<|η|<5.5, both 
hemispheres
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