
EvtGen Status/Plans

Anders Ryd

Cornell University March 31, 2010

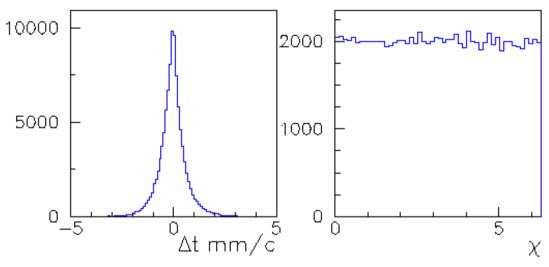
First I have to apologize about the poor preparation for this meeting. But other events took place earlier this week that required my full attention...

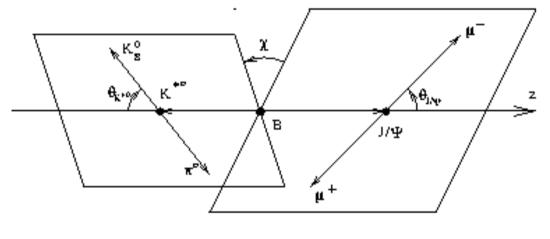
...7 TeV collisions at CMS

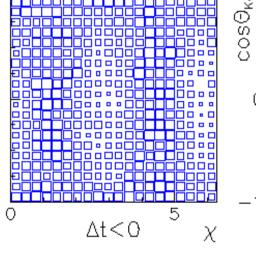
EvtGen Overview

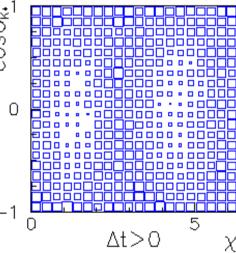
- Detailed amplitude based description of decays
 - Keeps angular correlations in decay chains
 - ◆Implements CP violations in B decays
- Detailed decay table for most light particles up to the mass of the Upsilon system.
- Main developers: Anders Ryd and David Lange (both in CMS) but neither of us have much time to work on this...)
- Many contributions from people on different experiments:
 - ◆BABAR, CLEO, Belle, CDF, LHCb, ATLAS, CMS, Panda

Sequential Decays


Many decays have interesting sequential decay chains:


 Want to correctly simulate these decay chains while only implementing the nodes in the decay tree.


$$B \to D^* \ell \nu$$
 $B \to D^* D^*$ $D^* \to D \pi$ $D^* \to D \gamma$


CP Violating Decays

- $B->J/\psi K^{*0} (K^{*0}->K^0\pi^0)$
 - Angular correlations and time dependence

'EvtGenLHC'

- In ~2003 LHCb and ATLAS started using EvtGen. They took the current version used at BABAR.
- A number of initial changes were fed back to the BABAR repository. (Where David and I did the main development.)
- But over the years a number of different changes were made to the EvtGenLHC version.
- But most importantly many fixes made at BABAR and CLEO were not propagated to the EvtGenLHC version.
 - This meant that I many times had to trace down the same problems multiple times.

The '2009 Merge'

- •A meeting was held in Jan 2009 where different changes made to EvtGen by different experiments were discussed. After this meeting I got patches and new code from ATLAS, CMS, LHCb, CDF, Herwig developers. I also took code from CLEO and merged this into the BABAR repository.
- This new version was tested by e.g. LHCb and a few issues were resolved. LHCb are still looking at some features in the generation of CP violation.
 - ◆I will meet with Patrick Robbe and try to sort out this next week.
 - Then we will release a new version.

EvtGen and tau Decays

- EvtGen decays taus. (Z. Was might discuss this in his talk)
 - Detailed models of leptonic, and final states with one or two hadrons.
 - Higher multiplicity final states are simulated using a V-A modul in JetSet.
- I prefer that EvtGen decays taus produced in B decays as it will automatically take into account the polarization.
- EvtGen can handle two body decays (HELAMP, PARTWAVE) to pairs of taus or tau-neutrino pairs.
- The code in EvtGen is able to handle this, but there has to be an interface to EvtGen that specifies the initial polarization.

Summary

- The main issue with EvtGen from my point of view is that neither David nor I have any time to work on this any more.
- •We have had a great deal of help from LHCb, next talk.
- I hope that David and I can find time to release a new version that incorporates the changes from (at least) LHCb.

Backup

Decay amplitudes are used instead of probabilities

EvtGen works with amplitudes to correctly handle sequential decay.

$$B \to D^* \qquad \tau \nu$$

$$\downarrow D\pi \qquad \downarrow \pi \nu$$

$$d\Gamma = |A|^2 d\phi \qquad A = \sum_{\lambda_{D^*} \lambda_{\tau}} A_{\lambda_{D^*} \lambda_{\tau}}^{B \to D^* \tau \nu} A_{\lambda_{D^*}}^{D^* \to D\pi} A_{\lambda_{\tau}}^{\tau \to \pi \nu}$$

$$A_{\lambda_{D^*} \lambda_{\tau}}^{B \to D^* \tau \nu} \equiv \langle \lambda_{D^*} \lambda_{\tau} | H | B \rangle \qquad \sum_{\lambda_{D^*}} |\lambda_{D^*} \rangle \langle \lambda_{D^*} | = I$$

 Nodes in the decay tree are implemented as "models". The framework of EvtGen handles the bookkeeping needed to correctly generate the full decay tree.

Advantages to using decay amplitudes

- Implementation of decay models is simplified by using amplitudes instead of probabilities.
- Keeping track of the spin density matrices allows us to generate each node of the decay chain independently.
 - More efficient
 - Avoids the need to determine uncountable # of maximum probabilities
- Generalizes to arbitrarily long decay chains
- Calculation of probabilities and spin density matrices are done by the framework. Models specify only the decay amplitudes.
- However: No interference between particles on different branches of decay tree.

Selection algorithm (I)

Generate the B->D*Iv decay

$$P = \sum_{\lambda_{D^*} \lambda_{\tau}} |A_{\lambda_{D^*} \lambda_{\tau}}^{B \to D^* \tau \nu}|^2$$

- Compare with maximum probability and accept or reject generated $B \rightarrow D^* l v$ decay.
 - Maximum probability specified in code.
 - Can instead be generated on the fly, however this leads to the output of event N depending on the random number sequence used to determine the max probability.
- Regenerate $B \rightarrow D^*lv$ decay until combination is accepted.

Selection algorithm (II)

• Average over τ spin and calculate the D^* spin density matrix:

$$\rho^{D^*}_{\lambda_{D^*}\lambda'_{D^*}} = \sum_{\lambda_{\tau}} A^{B \to D^* \tau \nu}_{\lambda_{D^*}\lambda_{\tau}} (A^{B \to D^* \tau \nu}_{\lambda'_{D^*}\lambda_{\tau}})^*$$

• Generate the $D^*->D\pi$ decay

$$P = \sum_{\lambda_{D^*} \lambda'_{D^*}} \rho_{\lambda_{D^*} \lambda'_{D^*}}^{D^*} A_{\lambda_{D^*}}^{D^* \to D\pi} (A_{\lambda'_{D^*}}^{D^* \to D\pi})^*$$

- Compare with maximum probability and accept or reject generated $D^*->D\pi$ decay
- Regenerate $D^*->D\pi$ decay until accepted. The $B->D^*Iv$ decay is **not** regenerated.

Selection algorithm (III)

Calculate the spin density matrix for the τ

$$\rho^{\tau}_{\lambda_{\tau}\lambda_{\tau}'} = \sum_{\lambda_{D^{*}}\lambda_{D^{*}}'} \hat{\rho}^{D^{*}}_{\lambda_{D^{*}}\lambda_{D^{*}}'} A^{B \to D^{*}\tau\nu}_{\lambda_{D^{*}}\lambda_{\tau}} (A^{B \to D^{*}\tau\nu}_{\lambda_{D^{*}}\lambda_{\tau}'})^{*}$$

Where:

$$\hat{\rho}_{\lambda_{D^*}\lambda'_{D^*}}^{D^*} \equiv A_{\lambda_{D^*}}^{D^* \to D\pi} (A_{\lambda'_{D^*}}^{D^* \to D\pi})^*$$

Generate the $\tau - > \pi \nu$ decay

$$P = \sum_{\lambda_{\tau} \lambda_{\tau}'} \rho_{\lambda_{\tau} \lambda_{\tau}'}^{\tau} A_{\lambda_{\tau}}^{\tau \to \pi \nu} (A_{\lambda_{\tau}'}^{\tau \to \pi \nu})^*$$

- Compare with maximum probability and accept or reject generated $\tau > \pi v$ decay.
- Regenerate $\tau -> \pi v$ decay until accepted. The B -> D*Iv and $D*-> D\pi$ decays are not regenerated.

States in EvtGen

- EvtGen works with amplitudes. The amplitudes are specified as amplitudes between the initial and final state in a set of basis vector provided by EvtGen.
- EvtGen uses the following representation for the lower spin states:

Class name	Rep.	J	States	Example
EvtScalarParticle	1	0	1	π , B^0
EvtDiracParticle	u_{α}	1/2	2	e, au
${f EvtNeutrinoParticle}$	u_{α}	1/2	1	$ u_e$
${f EvtVectorParticle}$	ϵ^{μ}	1	3	$ ho,J/\Psi$
${f EvtPhotonParticle}$	ϵ^{μ}	1	2	γ
EvtTensorParticle	$T^{\mu u}$	2	5	D_2^\star,f_2

- Also J=3/2 EvtRaritaSchwinger 4 states
- Higher spin states are represented by a generic helicity state basis