
MC validation and tuning tools
Rivet & Professor

Andy Buckley
University of Edinburgh

MC4LHC readiness workshop, CERN, 2010-03-31

1/42

Contents

1 Rivet
2 Professor
3 Conclusions

2/42

Rivet and Professor

Rivet and Professor are:

I Contrived acronyms!
I Tools for checking and improving generator tunes
I Tools for improving generator models
I Available to use and contribute towards
I Used to some extent by all LHC collabs (except ALICE?)

They are not. . .

I . . . magic!⇒ Garbage in, garbage out.

Let’s begin.

3/42

Rivet

4/42

Rivet at 100 km/h

I Rivet is (to 1st order) “HZTOOL++”
I Tool for replicating experimental analyses for MC

generators
I With some lessons learnt:

big emphasis on generator independence
⇒ split steering from analysis

I Tools and key analyses in one system
I Also: usable as library or executable, dev or user
I Current release: 1.2.1, about 1 week old!

5/42

A complete validation/tuning system

6/42

Some Rivet characteristics

I Using HepMC pipes for generic
processing with rivet

I LWH/AIDA for histogramming:
long-overdue replacement!

I All analyses loaded from as runtime
“plugins”

I Reference data bundled. . . most
exported from HepData

I Code structured with “projections” to
cache computations

Makes writing analyses very clean and
compact

I “AGILe” gen interfaces for convenience
with Fortran gens→ HepMC

Designing a Rivet. . .

7/42

Running Rivet
Use the rivet command line tool. Controls which analyses get
run, to view analysis metadata, write out histos in several
formats, etc.

Metadata:
rivet --list-analyses # add "-V" for titles
rivet --show-analysis D0_2008_ # pattern matching

Analysing:
agile-runmc Pythia6:422 --beams=TVT:1960 -n 200000 \

-o - | rivet -a D0_2008_S7662670
or use e.g. mkfifo hepmc.fifo...

Generator input mostly comes as HepMC ASCII data from a
steering program. AGILe interfaces can be used to pass
generator params for Fortran gens. For C++ gens use native
executables.

8/42

Rivet metadata

rivet --show-analysis D0_2008_S7863608
D0_2008_S7863608
================

Spires ID: 7863608
Spires URL: http://www.slac.stanford.edu/[...]=key+7863608
Experiment: D0
Year of publication: 2008

Description:
Differential Z/gamma* + jet + X cross sections

References:
hep-ex/08081296

Used to automatically build sections of the manual:
arXiv:1003.0694

9/42

Some example output

b

b

b

b

b
b

b b b b b

b
b

b

b

b

b

b

b

b
b

CDF datab

H++ 2.4.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Nch (transverse) for min-bias

N
ch

0 5 10 15 20

0.6

0.8

1

1.2

1.4

plead⊥ / GeV

M
C
/
d
a
ta

10/42

Some example output

b

b

b

b

b

b
b b b

b
b

b b
b

b

b

b

b

b

b

b

CDF datab

H++ 2.4.2

0

1

2

3

4

5

psum⊥ (transverse) for min-bias

p
su

m
⊥

/
G
eV

0 5 10 15 20

0.6

0.8

1

1.2

1.4

plead⊥ / GeV

M
C
/
d
a
ta

11/42

Some example output

b

b

b

b b b
b b b

b
b b

b
b b

b b
b b b b b b b b

b b
b

b
b b

b

b

b

CDF datab

H++ 2.4.2

0

0.5

1

1.5

2

2.5

3

3.5

TransMAX region charged ∑ p⊥ density

〈 ∑
p
tr
a
ck

T
〉/

d
η
d

φ
/
G
eV

0 50 100 150 200 250 300 350 400

0.6

0.8

1

1.2

1.4

pT(leading jet) / GeV

M
C
/
d
a
ta

12/42

Getting Rivet

Easiest, if not already installed (e.g. ATLAS, soon CERN TH):
use bootstrap script

wget http://svn.hepforge.org/rivet/bootstrap/rivet-bootstrap
chmod +x rivet-bootstrap
./rivet-bootstrap

Should work on all Linux and Mac platforms: build tested
automatically when code changes in repository for many
platforms, 64/32 bit, etc..

Bootstrap uses LCG Genser packages when possible
(unless forced otherwise).

13/42

Writing an analysis
Easiest way to start: rivet-mkanalysis makes template analysis
code and metadata files. Might even screen-scrape SPIRES. . .

Projections registered with a name in the analysis constructor:
class MyAnalysis : public Analysis {
MyAnalysis() {
setBeams(PROTON, PROTON);
ChargedFinalState cfs;
addProjection(cfs, "CFS");
...

Apply them in the analyze method via that name:
void MyAnalysis::analyze(const Event& evt) {
...
const FinalState& fs =
applyProjection<FinalState>(evt, "CFS");

const ParticleVector ps = fs.particles();
foreach (const Particle& p, ps) {
...

14/42

Reference data

Bundle reference data for std analyses – mostly obtained direct
from HepData.

MC histograms usually use binnings based on the ref data:
automatic consistency.

15/42

Reference data

Bundle reference data for std analyses – mostly obtained direct
from HepData.

MC histograms usually use binnings based on the ref data:
automatic consistency.

16/42

Reference data

Bundle reference data for std analyses – mostly obtained direct
from HepData.

MC histograms usually use binnings based on the ref data:
automatic consistency.

17/42

Rivet projections

A quick selection:

I Final states: normal, DIS, “vetoed”, charged, hadronic,
unstable (for flavour studies). . .

I Event shapes: thrust, sphericity (regularisable),
Parisi C & D params, hemispheres. . .

I Jets: kT, CDF “track jet”, DØ ILC, SISCone, CDF RunII
Midpoint all via FastJet

I Misc: jet shapes, primary vertex position, secondary
vertices. . .

. . . and lots more. Pretty much everything you need.

18/42

Final Rivet remarks
Rivet is usable for validation, comparison, regression, tuning
input. . . it’s quite a generic tool, aided by “small is beautiful”

You can also do evil things with evt record internals if you
insist. . . but not in analyses that we’ll take!

Many analyses provided – about 80, including first ATLAS
analysis! I believe CMS have a (proposed?) policy that Rivet is
used for MC analysis comparisons: awesome! Please supply
your experiment’s analyses and make your data reproducible
forever. . .

Input your requests – and implementations: BELLE, LEP jet
angles, SLD. . . it would still be nice to have more HERA
migration from HZTOOL.

Manpower is an issue: the few core developers can’t keep up
with the rate of analysis interesting to MC authors. Please help
us to keep up, especially if you wrote the data analysis.19/42

Professor

20/42

Parameters

We have lots of parameters:

I PS: tmin, αs or ΛQCD (really)
I Hadronisation: depends strongly on model

String: string tension σ, Lund symm FF a and b
params, baryon suppression, flavour params

Cluster: constituent masses, flavour params
I UE: interaction form factor params (Gaussian

width/p(r,h)oton radii), pmin
⊥ , colour reconnection params

I CKKW & friends: ME/PS matching scale,
factorization/renorm. scale

Can sometimes be tuned independently: e.g. kinematics, flavour,
UE. . . depending on analyses

21/42

Tuning methods

Lots of correlated parameters,
200k–10M events per run (kin. binning):
tuning is non-trivial. Too slow for serial
MCMC sampling approaches to be useful:
MC runs are “very expensive functions”.

Most tunes: by eye / by grad student. Painful, uninspiring and
sub-optimal. Hard to repeat!

Herwig++ tunes: brute-force random on Grid + local param
grid scan

DELPHI: Hamacher et al (1995) quadratic interpolation tune.
Scalable, interesting and it works . . .

Bear in mind there is some art to this. . .

22/42

Professor
The Professor tuning project (Durham/Edinburgh,
Lund/Durham, Berlin) extends the DELPHI approach.
Implemented in Python with SciPy (+ weave) & PyMinuit.

1 Sample N random MC runs from
n-param hypercube using e.g. Rivet

2 For each bin b in each distribution, use
the N points to fit an interpolation
function using a singular value
decomposition.

3 Construct overall χ2 function and
(numerically) minimise

4 Test optimised point by scanning around
it in param and lin comb directions

Ask for details. . . or see the paper:
arXiv:0907.2973

23/42

Some tune param spreads

Oversampling required, but if we really oversample, then can
make many combinations of input MC runs:

1.6 1.8 2.0 2.2 2.4
PARP(82)

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
PARP(90)

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

χ
2 /

N
df

1.0 1.5 2.0 2.5 3.0 3.5 4.0
PARP(71)

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

Gives an informal picture of how well-constrained (the projection
of) a parameter is. Return to this later.

24/42

Checking parameterisation: line-scans

25/42

Checking parameterisation: line-scans

26/42

Tunes
First tunes were “Prof” tunes of PYTHIA 6: much effort in
determining parameter factorisations (p . O(10)) and
observable weightings: the art bit

Once this was done, easy to make new tunes to other PDFs, etc.
with rapid turnaround: length of one high-stats MC iteration:
∼ 1–3 days). Extra Prof tunes to CTEQ6L1, LO*, LO**. Prof tune
to LEP fragmentation used in Perugia and other std tunes.

More tunes: Pythia 8 LEP frag tune (model blocks MPI tune so
far – see Torbjörn’s talk on Monday), SHERPA new
hadronisation tune. SHERPA hadronisation and soft physics
development iterated/debugged in close collaboration with Prof
tuning: Eike von Seggern and Hendrik Hoeth.

Herwig++ shower proving harder to parameterise: dicontinuous
parameter behaviours. Will revisit after Professor ”hacking
week” in late April.

27/42

Interactivity

Key feature of Professor (takes time to realise) is that a) we are
parameterising a very expensive function, and b) the input to
that parameterisation can be trivially parallelised.

Prof parameterisation (for many, many run combinations) can
also be parallelised, as can optimisation.

So single-run MC produces a fast, analytic “pseudo-generator”.
Can get a good approximation of what a generator will do when
run for many hours/days with particular params, in < 1 second!

But these things are more general than optimising a tune: why
not make an interactive MC simulator?

28/42

prof-I

29/42

prof-I

30/42

prof-I

31/42

prof-I

32/42

prof-I

33/42

prof-I

34/42

Statistically-driven tune error bands
Errors from tune ellipsoid sampling

CL=95%
CL=68%

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Transverse region charged particle density

p⊥(leading track)/GeV

〈p
tr
a
ck

⊥
〉/

G
eV

CL=95%
CL=68%
Jimmy pseudodata, 1M events

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Transverse region charged particle density

p⊥(leading track)/GeV

〈p
tr
a
ck

⊥
〉/

G
eV

35/42

Statistically-driven tune error bands
Errors from run-combination sampling

CL=95%
CL=68%

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Transverse region charged particle density

p⊥(leading track)/GeV

〈p
tr
a
ck

⊥
〉/

G
eV

CL=95%
CL=68%
Jimmy pseudodata, 1M events

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Transverse region charged particle density

p⊥(leading track)/GeV

〈p
tr
a
ck

⊥
〉/

G
eV

36/42

Statistically-driven tune error bands
Full errors from combined spread/runcomb sampling

Hopefully coming soon. See the Les Houches 2009/10 tools
proceedings: arXiv:1003.1643

37/42

Evolution of (partial) tune error beyond measured
√

s
E.g. height of underlying event Nchg “plateau” vs.

√
s:

LHC

TevatronRHIC pp

CL=95%
errors enlarged 10× for visibility

10 2 10 3 10 4
0

0.5

1

1.5

2

2.5
Height of plateau in transverse charged particle density

√
s / GeV

〈〈N
ch

/
dη

dφ
〉〉

For PYTHIA in a two-param tune. . . but not p0
⊥ evolution

exponent [PARP(90)], so don’t take numbers seriously: it’s the
principle.

38/42

Final Professor remarks

Professor works, is public, is increasingly in demand. ATLAS
certainly using it internally / CMS evaluating (?) / some
(private?) LHCb use

Quite a few tunes being worked on. We are now encouraging
users to do tunes themselves: we will provide lots of help!

Tunes are not suddenly a push-button experience: you need
to know what the MC can reasonably describe. Weights not
just for whole observables, but even for regions of plots. May
need to introduce “meta-parameters” on top of the MC, e.g.
relative normalisations or coupled params.

Need to be careful not to “tune away physics”: my feeling is that
this has not yet been an issue. Understanding the MC and the
data is key to not falling into the “garbage out” trap!

39/42

Conclusions

40/42

Summary
Rivet and Professor working well, increasing interest⇒ lots of
demand for us to implement analyses and do tunes. . . as for
generators, users need to use the tools themselves. cf. ATLAS

To experimentalists: the point of publication is to produce
measurements which stand the test of time and can be used to
test new theory/MC models far in the future. Please write a
Rivet routine, and please, please provide data which has been
corrected only for the detector effects, as well as the
model-dependent interpretation, extrapolation etc.. Not
reproducible ≈ useless!
See Les Houches tools contribution on the issue of Z p⊥ QED and phase-space extrapolation.

We’re making an effort to provide latest Rivet and significant
Professor snapshots as standard LCG packages: makes it much
easier for “average LHC physicist” to use tools.

In good shape, I think, but there is always room for
improvement!41/42

Thank you!

A huge thank you to all the CEDAR, MCnet
and otherwise-associated people who’ve
contributed to Rivet and Professor over the
last couple of years:

Hendrik Hoeth, Frank Siegert, Holger Schulz,
James Monk, Gavin Hesketh, Frank Krauss,
Eike von Seggern, Emily Nurse,
Leif Lönnblad, Lars Sonnenschein,
Peter Richardson, Christophe Vaillant,
Mike Whalley, Heiko Lacker and more.

Please keep contributing!

42/42

	Rivet
	Professor
	Conclusions

