Towards a Model for Minimum Bias Events in Sherpa

Frank Krauss (with M. Ryskin, V. Khoze, A. Martin, and K. Zapp)

IPPP Durham

CERN MC4LHC - Tools readiness workshop - 29.3.2010

IPPP Durham

Towards a Model for Minimum Bias Events in Sherpa

Outline

1 Introduction: A single eikonal model

2 Implementing the KMR model

Preliminaries

s-channel unitarity and cross sections

• Optical theorem relates total cross section σ_{tot} with elastic scattering amplitude $\mathcal{A}(s, t)$ through

$$\sigma_{ ext{tot}}(s) = rac{1}{s} \operatorname{Im}[\mathcal{A}(s, t = 0)]$$

• Rewriting $\mathcal{A}(f, \sqcup)$ as a(s, b) in impact parameter space

$$\mathcal{A}(s,t=-ec{q}_{\perp}^2)=2s\int\mathrm{d}^2b_{\perp}e^{iec{q}_{\perp}\cdotec{b}_{\perp}}a(s,ec{b}_{\perp})$$

yields

$$egin{array}{rcl} \sigma_{
m tot}(s) &=& 2\int {
m d}^2 b_\perp {
m Im}[a(s,ec{b}_\perp)] \ \sigma_{
m el}(s) &=& 2\int {
m d}^2 b_\perp |a(s,ec{b}_\perp)|^2 \ \sigma_{
m inel}(s) &=& \sigma_{
m tot}(s) - \sigma_{
m el}(s) \end{array}$$

• N.B.: real part of $a(s, \vec{b}_{\perp})$ vanishing

Towards a Model for Minimum Bias Events in Sherpa

メロト メロト メヨト メ

Single eikonal model	Implementing the KMR model	Conclusions & Outlook

Parametrisations of total cross section

- Good old strong interaction physics (Regge poles): cross section given by sum over Regge exchanges
- Leading Regge pole (Pomeron) yields

$$\sigma_{\rm tot} = \sigma_0 \left(\frac{s}{s_0}\right)^{\alpha_P - \frac{1}{s_0}}$$

Donnachie-Landshoff:

$$\sigma_0 = 21.7 \text{ mb}, \ s_0 = 1 \text{ GeV}^2, \ \alpha_P = 1.0808.$$

- CDF: $\sigma_0 = 24.36$ mb, rest like DL.
- Two-pomeron fit:

$$\sigma_{\rm tot} = 0.0139 {\rm mb} \left(\frac{s}{s_0}\right)^{0.452} + 24.22 {\rm mb} \left(\frac{s}{s_0}\right)^{0.0667}$$

Image: A math a math

Parametrisations of total cross section (cont'd)

• Predictions for $\sigma_{tot}(14 \text{TeV})$:

$$\sigma_{\rm tot}(14 {\rm TeV}) = \begin{cases} 101.5 \, {\rm mb} \quad ({\rm DL}) \\ 114.0 {\rm mb} \quad ({\rm CDF}) \\ 164.4 {\rm mb} \quad ({\rm two-pom}) \end{cases}$$

- Common problem: all violate unitarity (because $\alpha_P > 1$)
- Possible solution: use parametrisation for (see next slide) eikonal rather than for cross section

$$\Omega(s) \simeq \left(\frac{s}{s_0}\right)^{\alpha_P - s}$$

• N.B.: pomeron intercept *t*-dependent

$$\alpha_P(t) = \alpha_P + \alpha'_P t$$
 ($\alpha' = 0.25 \text{ GeV}^{-2}$)

IPPP Durham

イロト イポト イヨト イヨト

Single eikonal model Implemen	ting the KMR model	First Results	Conclusions & Outlook

Eikonals

• Common parametrisation of amplitude though eikonal $\boldsymbol{\Omega}$

$$a(s, \vec{b}_{\perp}) = \frac{e^{-\Omega(s, b_{\perp})} - 1}{2i}$$

Then: $\sigma_{\text{tot}}(s) = 2 \int d^2 b_{\perp} [1 - e^{-\Omega(s, \vec{b}_{\perp})}]$
 $\sigma_{\text{el}}(s) = \int d^2 b_{\perp} [1 - e^{-\Omega(s, \vec{b}_{\perp})}]^2$
 $\sigma_{\text{inel}}(s) = \int d^2 b_{\perp} [1 - e^{-2\Omega(s, \vec{b}_{\perp})}]$

イロト イヨト イヨト イヨト

Towards a Model for Minimum Bias Events in Sherpa

Single eikonal model	Implementing the KMR model	

A useful relation

• Consider elastic slope B

$$B(s, t = 0) = \left[\frac{\mathrm{d}}{\mathrm{d}t} \ln \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t}\right]_{t=0}$$

• In simple pomeron parametrisation:

$$B \longrightarrow 2\alpha'_P \ln \frac{s}{s_0} + B_0$$

leading to (CDF parameters)

$$B = \begin{bmatrix} \ln \frac{\sqrt{s}}{1.8 \text{ TeV}} + (17 \pm 0.25) \end{bmatrix} \text{ GeV}^{-2} \\ = \begin{bmatrix} \ln \frac{\sqrt{s}}{14 \text{ TeV}} + (19 \pm 0.25) \end{bmatrix} \text{ GeV}^{-2}$$

• Also calculable from eikonal form:

$$B = rac{1}{\sigma_{
m tot}} \int {
m d}^2 b_\perp b_\perp^2 [1 - e^{-\Omega(s, ec{b}_\perp)}]$$

F. Krauss

Towards a Model for Minimum Bias Events in Sherpa

《曰》 《圖》 《臣》 《臣》

Multi-channel eikonals

Motivation

- Impossible to describe "diffractive excitation" (like e.g. p → N(1440)) with one eikonal only: such processes are a consequence of the internal structure of the colliding hadrons
- For description employ high-energy limit: in this limit the Fock states of the hadrons are "frozen",

(lifetime of fluctuations $\tau = E/m^2$ large)

< = > < = > < = >

and each component can interact separately, destroying coherence of the colliding hadrons

Good-Walker states

• Introduce Good-Walker states (diffractive eigenstates):

$$|p
angle=\sum\limits_{i}a_{i}|\phi_{i}
angle$$
, where $\langle\phi_{i}|\phi_{k}
angle=\delta_{ik}$ and $\sum\limits_{i}|a_{i}|^{2}=1$

• These states diagonalise the T-matrix:

$$\langle \phi_i | \mathrm{Im} \mathcal{T} | \phi_k \rangle = \mathcal{T}_k^D \delta_{ik}$$

- Therefore only "elastic scattering" of these states
- N.B.: use two states (more later),

$$|p, N^*\rangle = \frac{1}{\sqrt{2}} [|\phi_1\rangle \pm |\phi_2\rangle],$$

related to two different form factors,

$$F_{1,2}(q_{\perp}) = \beta_0^2 (1 \pm \kappa) \frac{\exp\left[-\frac{(1 \pm \kappa)\xi q_{\perp}^2}{\Lambda^2}\right]}{\left[1 + \frac{(1 \pm \kappa)q_{\perp}^2}{\Lambda^2}\right]^2}$$

IPPP Durham

Cross sections with Good-V	Walker states		
• Decompose incoming state	e $ j angle=a_{jk} \phi_k angle$ and write		
$\langle j { m Im}{\cal T}$	$ j angle = \sum\limits_k a_{jk} ^2 T_k \equiv \langle T angle$		
• Allows to write cross section	ons as		
$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}^2 b} = 2$	$2 { m Im} \langle j {\cal T} j angle = 2 \langle {\cal T} angle$		
$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}^{2}\boldsymbol{b}} =$	$ \langle j \mathcal{T} j angle ^2=\langle T angle^2$		
$rac{\mathrm{d}\sigma_{\mathrm{el+SD}}}{\mathrm{d}^2 b} =$	$\left \left\langle \phi_{k} \mathcal{T} j ight angle ight ^{2}=\sum_{k} a_{jk} ^{2}T_{k}^{2}=\left\langle T^{2} ight angle$		
$rac{\mathrm{d}\sigma_{\mathrm{SD}}}{\mathrm{d}^2 b} =$	$\langle T^2 angle - \langle T angle^2$		
• Single diffraction given by statistical dispersion of absorption			
probabilities of diffractive eigenstates			

F. Krauss

IPPP Durham

Э

▲ロト ▲圖ト ▲屋ト ▲屋ト

Implementing the KMR model	

Comments

- If all components of j, i.e. all eigenstates φ_k, experienced same absorption:
 - \longrightarrow dispersion vanishes
 - \longrightarrow diffractive production xsec vanishes
- This happens in the black disc limit ($T_k = 1$), at small b_{\perp}
- Consequence: already at Tevatron energies diffractive production processes due to large b_{\perp}
- This region is responsible for small t components
- Also: there eikonal (equivalent to optical density, opacity) is small
 → large rapidity gap survival probability

(due to small density, only few scatters)

JPPP Durham

イロト イポト イヨト イヨト

Developing a partonic picture

Basic idea: Regge physics rules

- Want to use Regge physics, in particular pomeron exchange, for amplitudes
- Naively write $A(s, ec{b}_{\perp}) \propto (s/s_0)^{lpha_P(t)}$
- Want to connect Regge picture to QCD
- Unitarisation (naive): identify amplitude with eikonal eikonal related to sum over all possible pomeron-exchanges between hadronic states

(日) (同) (三) (三)

The pomeron in QCD - trivialised

- Pomeron as the sum of ladder-type diagrams, i.e. a sum over all (inelastic) $2 \rightarrow N$ processes
- Treat diagram (right) as amplitude squared for the production of N particles, homogeneously distributed in rapidity y with $y \in [-Y/2, Y/2]$ and $Y = \ln s/m_p^2$:

$$\sigma_{2\to N} = A_{2\to N}(Y)A_{2\to N}^*(Y)$$

• □ ▶ • □ ▶ • □ ▶ •

IPPP Durham

The pomeron in QCD - trivialised (cont'd)

• The amplitude then reads

$$A(Y) = \sum_{n} \frac{1}{n!} \prod_{i=1-Y/2}^{N} \int_{-Y/2}^{Y/2} \mathrm{d} y_i \alpha = \sum_{n} \frac{(\alpha Y)^n}{n!} = e^{\alpha Y} = s^{\alpha}$$

• with the k_{\perp} -integral over each cell of the ladder:

$$\alpha(q_{\perp}^2) = \frac{g^2}{16\pi^2} \int \frac{\mathrm{d}^2 k_{\perp}}{[k_{\perp}^2 - m^2][(k_{\perp} - q_{\perp})^2 - m^2]}$$

• Alternative way to obtain result:

$$\frac{\mathrm{d}A(y)}{\mathrm{d}y} = \alpha A(y)$$

 Similar to DGLAP equation, but for evolution in y - α plays role of splitting kernel

(describing with uniform emission probability)

(日) (同) (三) (三)

Implementing the KMR model	

Parameters

• Typically written as recursion from the amplitude for the *n* – 1 to the *n* particles final state:

$$f_n(x,k_{\perp}) = \frac{N_c \alpha_s}{\pi} \int_x^1 \frac{\mathrm{d}x'}{x'} \int \frac{\mathrm{d}^2 k_{\perp}'}{\pi} \mathcal{K}(k_{\perp},k_{\perp}') f_{n-1}(x',k_{\perp}')$$

Rewrite recursively

$$\frac{\mathrm{d}f}{\ln 1/x} = \frac{N_c \alpha_s}{\pi} \, K \otimes f$$

Therefore $f \propto x^{-\Delta_0}$, where $\alpha_P = 1 + \Delta$ and

$$\Delta_0 = rac{N_c lpha_s}{\pi} \langle K
angle = rac{N_c lpha_s}{\pi} 4 \ln 2 pprox 0.5$$

Including higher order effects,

$$\Delta \approx \Delta_0 \exp(-6\frac{N_c \alpha_s}{\pi}) \approx 0.3$$

(日)

IPPP Durham

Rescattering

Motivation

- High-density, strong coupling regime: rescattering effects important
- In other words: large triple pomeron vertex g_{3P}
- Physical effect: high-mass dissociation through diagrams like the one ot the right
- Note: other cuts apart from naive vertical possible

< 4 1 → <

Image: Image:

Fan diagrams and the Schwimmer model

 If large size differences of colliding particles (e.g. γp, pZ etc.): can resum "fan diagrams" (pomeron as dashed line)

Evolution equation:

$$\frac{\mathrm{d}f(y)}{\mathrm{d}y} = \Delta f(y) - g_{3P}f(y)$$

Total cross section becomes

$$\sigma_{\rm tot} = \frac{g_i g_k e^{\Delta Y}}{1 + \epsilon (e^{\Delta y} - 1)} \xrightarrow{Y \to \infty} \frac{g_i g_k}{\epsilon}$$

where $\epsilon = g_{3P}g_k/\Delta$ is maximal density of pomerons

Problem: too low xsec for large-mass dissociation

Implementing the KMR model	

(Re-) Interpretation of the amplitude

 Start with the evolution equation for the bare pomeron contribution to the elastic amplitude:

$$\frac{\mathrm{d}f(y)}{\mathrm{d}y} = \Delta f(y)$$

 This can also be regarded as the evolution equation for the parton density of hadron *i* (entering at y = -Y/2) in the presence of hadron k: dΩ_i(k)(y) = 10 = (c) = -2 = Δ(x+X/2)

$$\frac{\mathrm{IL}_{i(k)}(y)}{\mathrm{d}y} = \Delta\Omega_{i(k)}(y) \Longleftrightarrow \Omega_{i(k)}(y) = g_i^2 e^{\Delta(y+Y/2)}$$

• g_i is fixed by the initial condition, i.e. the interaction probability or the parton density at y = -Y/2

(given by the Fourier transform related to the eigenstate ϕ_i)

(日) (同) (三) (三)

IPPP Durham

Implementing the KMR model	Conclusions & Outlook

Summing all rescattering contributions

- Multi-pomeron contributions (rescattering) arise from absorption of intermediate *s*-channel partons (the rungs in the ladder during evolution
- Allowing for all possible rescatterings/absorptions, must sum over all possible ladder configurations:

$$\frac{\mathrm{d}f(y)}{\mathrm{d}y} = \exp[-\lambda f(y)]\Delta f(y),$$

where $\lambda \propto g_{3P} \approx 0.25 g$, the pomeron-nucleon coupling

(in contrast Schwimmer model: $df(y)/dy = \Delta f(y) - g_3 p f(y)$)

Implementing the KMR model	

The Khoze-Martin-Ryskin model (naive version)

• Construct eikonal from individual parton densities:

$$\Omega(\vec{b}_{\perp}) = \frac{1}{2\beta_0^2} \int \mathrm{d}^2 b_{\perp}^{(1)} \mathrm{d}^2 b_{\perp}^{(2)} \delta^2(\vec{b}_{\perp} - \vec{b}_{\perp}^{(1)} - \vec{b}_{\perp}^{(2)}) \\ \cdot \Omega_{i(k)}(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)}, y) \Omega_{(i)k}(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)}, y) ,$$

(The value of the integral will not depend on y)

• where the parton densities fulfil the evolution equations

$$\frac{\mathrm{d}\ln\Omega_{i(k)}(y)}{\mathrm{d}y} = +\exp\left\{-\frac{\lambda}{2}\left[\Omega_{i(k)}(y) + \Omega_{(i)k}(y)\right]\right\}\Delta$$
$$\frac{\mathrm{d}\ln\Omega_{(i)k}(y)}{\mathrm{d}y} = -\exp\left\{-\frac{\lambda}{2}\left[\Omega_{i(k)}(y) + \Omega_{(i)k}(y)\right]\right\}\Delta$$

Implementing the KMR model	

The Khoze-Martin-Ryskin model (naive version)

• The boundary conditions read:

$$\Omega_{i(k)}(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)}, -Y/2) = F_i(b_{\perp}(1)^2)$$
$$\Omega_{i(k)}(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)}, +Y/2) = F_k(b_{\perp}(2)^2).$$

i.e. the parton densities at maximal rapidities are given by the parton densities of the hadrons, as modelled by the form factors.

- Form factor parameters: $\beta_0^2 \approx 30 \text{ mb}, \ \kappa \approx 0.5, \ \Lambda^2 \approx 1.5 \text{ GeV}^2, \ \xi \approx 0.2$
- Evolution parameters: $\Delta \approx 0.3$, $\lambda \approx 0.25$

The MC realisation

Selecting the mode

• Select elastic vs. inelastic processes according to

$$\begin{split} \sigma_{\text{tot}}^{pp} &= 2 \int d^2 b_{\perp} \sum_{i,k=1}^{S} \left\{ |a_i|^2 |a_k|^2 \left[1 - e^{-\Omega_{ik}(b_{\perp})} \right] \right\} \\ \sigma_{\text{inel}}^{pp} &= \int d^2 b_{\perp} \sum_{i,k=1}^{S} \left\{ |a_i|^2 |a_k|^2 \left[1 - e^{-2\Omega_{ik}(b_{\perp})} \right] \right\} \\ \sigma_{\text{el}}^{pp} &= \int d^2 b_{\perp} \left\{ \sum_{i,k=1}^{S} \left[|a_i|^2 |a_k|^2 \left(1 - e^{-\Omega_{ik}(b_{\perp})} \right) \right] \right\}^2 \end{split}$$

・ロト・日本・日本・日本・日本・今日・

IPPP Durham

Implementing the KMR model	

Selecting gross features of scattering mode

• If elastic is chosen, fix t according to

$$\begin{split} \frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t} &= \frac{1}{4\pi} \left\{ \int \mathrm{d}^2 b_{\perp} e^{i \vec{q}_{\perp} \cdot \vec{b}_{\perp}} \\ &\sum_{i,k} \left[|a_i|^2 \, |a_k|^2 \left(1 - e^{-\Omega_{ik}(\vec{b}_{\perp})} \right) \right] \right\}^2 \end{split}$$

• If inelastic is chosen, fix $\{ik\}$ according to partial contribution and \vec{b}_{\perp} according to integrand,

$$\mathcal{P}_{ik}(b_{\perp})\pi b_{\perp}\left(1-e^{-2\Omega_{ik}(b_{\perp})}
ight)$$

Implementing the KMR model	

Inelastic scattering: generating ladders

- Assume no correlations between ladders will be included a posteriori
- Select (naive) number of ladders to be exchanged according to Poissonian:

$$\mathcal{P}_{n=N_{\text{naive}}-1} = \frac{[2\Omega_{ik}(b_{\perp})]^n}{n!} \exp[-2\Omega_{ik}(b_{\perp})]$$

• For each ladder, fix $\vec{b}_{\perp}^{(1,2)}$ with $\vec{b}_{\perp} = \vec{b}_{\perp}^{(1)} + \vec{b}_{\perp}^{(2)}$:

$$rac{\mathrm{d}^2\Omega_{ik}(b_{\perp})}{\mathrm{d}^2 b_{\perp}^{(1)}} = rac{1}{2}\Omega_{i(k)}(ec{b}_{\perp}^{(1)},ec{b}_{\perp}^{(2)})\Omega_{(i)k}(ec{b}_{\perp}^{(1)},ec{b}_{\perp}^{(2)})$$

IPPP Durham

• After each ladder, check momentum of incoming hadrons if E_1 or E_2 exhausted terminate exchanging ladders therefore $N_{\rm ladders} \leq N_{\rm naive}$

IPPP Durham

Inelastic scattering: generating emissions

• Emit $n_{\rm gluons}$ gluons in each ladder, with $\langle n_{\rm gluon} \rangle = \int_{-Y/2}^{Y/2} \mathrm{d}y \rho(y)$ and

y-distribution according to ρ .

- $\rho(y) = \exp\left\{-\frac{\lambda}{2}\left[\Omega_{i(k)}(y) + \Omega_{(i)k}(y)\right]\right\}\Delta$
- Select IS and FS "beam-particles" according to PDF
- For each *t*-channel propagator select colour

(assume only colour singlet and octet exchange)

(日) (同) (三) (三)

$$\mathcal{P}_1 \propto \left\{1 - \exp\left[-rac{\Omega_{i(k)}(y_{i+1})}{\Omega_{i(k)}(y_i)}
ight]
ight\}^2$$

 $\mathcal{P}_8 \propto 1 - \mathcal{P}_1$ – this projects all non-singlet colours on an octet.

Implementing the KMR model	

Inelastic scattering: generating emissions (cont'd)

• Generate *t*-channel momenta q_{\perp} according to

$$egin{array}{rcl} \mathcal{P}_{ ext{sing}}(\pmb{q}^2_{\perp,i}) &=& rac{lpha_s(k^2_{\perp,i})}{(\pmb{q}^2_{\perp,i}+\mu^2_1)} \ \mathcal{P}_{ ext{oct}}(\pmb{q}^2_{\perp,i}) &=& rac{lpha_s(k^2_{\perp,i})}{(\pmb{q}^2_{\perp,i}+\mu^2_8)^{1+rac{N_clpha_s}{\pi}(y_{i+1}-y_i)}} \end{array}$$

- Reconstruct emitted $\vec{k}_{\perp,i} = \vec{q}_{\perp,i+1} \vec{q}_{\perp,i}$ and $k_i^{\mu} = k_{\perp,i} (\cosh y_i, \cos \phi_i, \sin \phi_i, \sinh y_i)$
- Accept ladder with probability given by ME expression for hardest $2 \rightarrow 2$ interaction.

イロト イヨト イヨト

First results

Elastic Cross Section

Minimum Bias from CDF (pp @ 1800 GeV)

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● のみで

IPPP Durham

Towards a Model for Minimum Bias Events in Sherpa

▲ロ▶▲園▶▲園▶▲園▶ 園 のQ@

IPPP Durham

Towards a Model for Minimum Bias Events in Sherpa

Minimum Bias from CDF ($p\bar{p}$ @ 1800 GeV)

▲ロト ▲御 と ▲ 臣 と ▲ 臣 - の Q ()

IPPP Durham

Minimum Bias from CDF ($p\bar{p}$ @ 1800 GeV) p_{\perp} distribution (transverse, $p_{\perp}^{\text{lead}} > 2 \text{ GeV}$) Transverse region charged p_{\perp} average $\langle p_T^{\text{track}} \rangle / \text{GeV}$ $1/\sigma d\sigma/dp_{\perp}$ SHERPA prelim. SHERPA prelim. 1.4 CDF Run-II - CDF Run-I 1.2 10 10^{-2} 0.8 10^{-3} 0.6 10^{-4} 0.4 10^{-5} 0.2 0 MC/data MC/data 1.4 1.4 1.2 1.2 1 0.8 0.8 F 0.6 0.6 80 100 120 140 6 0 20 40 60 1 2 3 5 4 p_T(leading jet) / GeV p_{\perp} / GeV

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三直 - のへで

IPPP Durham

Towards a Model for Minimum Bias Events in Sherpa

Pion Spectrum and Jet cross section at STAR (pp @ 200 GeV)

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国 - のQで

IPPP Durham

Conclusions

- Implemented KMR model in naive form
- Ambitious model: Tries to incorporate elastic, diffractive and inelastic scattering on identical footing
- MC implementation of these scattering modes straightforward
- However: Very inclusive in its original formulation is being substantially enhanced through MC implementation
- Important contribution missed yet: Rescattering of ladders "Pomeron in pomeron" – maybe dominant
- Improved modelling of energy-momentum conservation under way use parton luminosities to fix c.m.-energy of ladders will have to continue PDFs for $Q^2 \rightarrow 0$ impact should be small.

(日) (同) (三) (三)