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Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]

�3 =

�
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� (2)
2

, (3.1)

where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
The numbers 1 and 2 label different color lines.

3.3.2 Global Event ijm

(can we identify what is actually going on here –ijm)
cite Lisa’s paper, Matt’s paper. [71][72][73]
jet pull: [49]
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T = 450 GeV stopped improving (with a patience of 2 epochs). We arrived
at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T = 450 GeV) using di�erent optimizers (AdaDelta [94],
AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
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4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as

Le� = LSM +
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T = 450 GeV stopped improving (with a patience of 2 epochs). We arrived
at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T = 450 GeV) using di�erent optimizers (AdaDelta [94],
AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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architecture are provided in the text.
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