

Workshop on Low Emittance Rings 2010

CERN, 12-15 January 2010

EXPERIENCE WITH THE SOLEIL 352 MHZ RF SYSTEMS

P. Marchand

Booster RF system

- \geq E_n: 100 MeV \Rightarrow 2.75 GeV (rep. 3 Hz); V_{cav}: 100 \Rightarrow 900 kV @ 352 MHz
- \gt 1 x 5-cell Cu cavity (CERN LEP) \rightarrow P_{tot} : 20 kW (P_{dis} : 15 kW, P_{beam} : 5 kW)
- > 1 x solid state amplifier \rightarrow 35 kW CW @ 352 MHz (developed in house)

Cavity in the BO ring

BO RF room (amplifier & LLRF)

Booster 35 kW amplifier

147 amplifier modules and power supplies on 8 water-cooled dissipaters

330 W amplifier module

600 W, 300 Vdc / 30 Vdc converter

Booster amplifier power combination

Booster Low Level RF Electronics

3 « slow » control loops for the frequency, amplitude & phase

→ Stability of \pm 0.25 % in amplitude and \pm 0.2 ° in phase with bandwidth > 1 kHz

Diagram of the Booster RF control system

Operational experience with the Booster RF system

The Booster RF plant is in operation since mid 2005.

Up to date, after ~ 20 000 running hours,
only a single trip in operation, due to a human mistake (2006)

→ Never play with the equipment during the operation!

The 35 kW solid state amplifier has proved to be very reliable.

Only 5 (out of 150) modules had minor problems which did not affect at all the operating conditions, and could be quickly repaired during scheduled machine shutdowns.

→ Advantage of the high modularity and redundancy

Storage Ring (SR) RF system

- Arr E = 2.75 GeV, ΔE = 1.2 MeV, I_b = 500 mA Arr P_{RF} = 600 kW & V_{RF} = 4 MV @ 352 MHz
- > 2 cryomodules (CM), each containing a pair of single-cell s.c. cavities _____
- ➤ Each cavity powered with a 180 kW solid state amplifier
- ➤ Both CM supplied with LHe (4.5 K) from a single cryo-plant

SOLEIL cryomodule design

Cryomodule (CM) history

- > SOLEIL studies (1996) → launch the development of a CM prototype → realized in the frame work of a CEA/CERN collaboration
- ➤ After a *campaign of tests on the ESRF SR (2001 2002)*, the CM prototype was fully disassembled, significantly modified and then re-assembled and tested at CERN, in order to be used as the 1st CM of SOLEIL (CM1)

2002, the CM prototype under tests on the ESRF SR

2003, back to CERN for disassembling; at the entrance of the clean room

Feb. 2004, inside the clean room, removal of the power couplers

What the electrons can see when entering the CM

Tests of the single cavities in vertical cryostat

For each cavity, Qo larger than the specified value of 2 10^9 at E_{acc} of 6 MV/m

CERN, Sept. 2004: re-assembling

CEA, Sept. 2004, insertion of the LN2 - cooled Cu thermal shield

Dec. 2004, inside the CERN "bunker" for cryogenic & RF power tests

- → *In Feb. 2005*, the tests of CM1 were successfully completed :
 - 2.5 MV / cavity
 - 200 kW / coupler (full reflection)

Nov. 2005, CM1 transfer to SOLEIL SR

End 2005, CM1 in SOLEIL SR

Cryomodule (CM) history

- > SOLEIL studies (1996) → launch the development of a CM prototype
 → realised in the frame work of a CEA/CERN collaboration
- ➤ After a campaign of *tests on the ESRF SR (2001 2002)*, the CM prototype was fully disassembled, significantly modified and then re-assembled and tested at CERN, in order to be used as the 1st CM of SOLEIL (CM1)
- > CERN (Feb. 2005), tests of CM1 successfully completed > 2.5 MV / cavity & 200 kW / coupler (full reflection)
- > End of 2005: Delivery and installation of CM1 in the SOLEIL SR
- ➤ May 2006: CM1 cooldown & RF conditioning; Sept. 2006: 300 mA stored I_b
- \triangleright Opération using 1 CM & $I_b < 300$ mA, for \sim 2 years (as scheduled in phase 1)

CM₂

- \triangleright Decision to build CM2 in the industry \rightarrow Sept. 2005, order to ACCEL
- \triangleright May 2008: Delivery of CM2 \rightarrow Nov. 2008: 455 mA stored beam (2 CMs)
- > In 2009: 500 mA stored beam (machine R&D); 400 mA in top-up for users

RF cryogenic system

Both CM are supplied with LHe (4.5 K) from a single cryo-plant, a HELIAL-2000 device from AIR LIQUIDE, operated in mixed refrigerator/liquefier mode; it can provide up to 400 W of refrigeration and 60 l/h of liquefaction, simultaneously.

RF cryogenic area in the technical gallery

Helium compressor station

Helium gas buffers (2 x 50 m³)

SR 180 kW RF amplifier

Same principle as for the BO one, extended to 4 towers of 45 kW

→ 724 modules / amplifier x 4 cavities → 16 towers & ~ 3000 modules

Components of the SR amplifier

600 W – 280 Vdc / 28Vdc converter

352 MHz - 315 W amplifier module

Components of the SR amplifier

Power splitters
2,8 and 10 ways
(90, 350 & 20 pcs,
respectively

Power combiners 2.5, 25, 100, 200 kW; 320, 34, 26 & 6 pcs, respectively (S11 < - 30 dB)

March 2006, assembling of the amplifiers inside the RF room

March 2006, assembling of the amplifiers inside the RF room

Amplifiers 1 and 2 (CM1), ready for power tests on dummy load

April 6th 2006: 180 kW on amplifier 1

April 7th 2006: same result with amplifier 2

R&D with solid state amplifiers


```
6<sup>th</sup> generation transistors (V_{dc} = 50 \text{ V}) + SOLEIL expertise → fast progress

→ P_{mod} \sim 700 \text{ W}, G ~ 20 dB, \eta > 70\% @ 352 MHz
```

[Current module (V_{dc} = 28 V) : P = 315 W, G = 13 dB, η = 62 % @ 352 MHz]

 \rightarrow Huge improvement : P_{mod} x 2.2 & better performance

& thermal stress strongly reduced (T_{max} : 130 °C \rightarrow ~ 70 °C) \rightarrow longer lifetime

- → Beg. 2009, <u>transfer of technology</u> agreement concluded with ELTA-AREVA
- → ESRF contract for 7 SOLEIL type amplifiers of 150 kW (14 x 75 kW towers)

Collaboration agreements

- LNLS (Brésilian LS) : 2 x 40 kW @ 476 MHz (tests beg. 2010)
- SESAME (LS in Jordan): 4 x 150 kW @ 500 MHz

R&D at other frequencies

- L band (1.3 & 1.5 GHz) for 4th generation LS
- 88 MHz (SPIRAL2 GANIL)

SR Low Level RF Electronic system

SR LLRF = BO LLRF + direct RF feedback (figure below —)

 \rightarrow Stability of \pm 0.1 % in amplitude and \pm 0.05 ° in phase with a BW of ~ 50 kHz

Digital FPGA based LLRF system

 \rightarrow Stability of 0.1 % in amplitude and 0.1° in phase

Diagram of the SR RF control system

SR operational experience

Repetitive pbs with the CM frequency tuning mechanism

- Complete tuner assembly (step-motor, gear-box, driving screw, lever system) inside the CM, under vacuum and cryogenic environment
- Pbs on SUP3HC cavity at ELETTRA with a similar design
 - ightharpoonup Sparing use ightharpoonup back-up mode at fixed tuning $(I_b^{max})
 ightharpoonup V_{cav}(I_b) \& \phi(V_{cav})$
 - > Development of a new design
 - March 2009, prototype successfully tested on a test bench @ cold in CryHolab at CEA ← + 20 years of SOLEIL operation
 - New version implemented in Aug. 2009 on CM2 & Jan. 2010, on CM1
 - → In spite of repetitive pbs with the tuners, the impact on the operation was relatively weak, thanks to our *back-up mode at fixed tuning*

Trips « Excess of P_{ref} », which occurred @ 250 mA with 1 CM

Erratic events at a mean rate of ~ 1 / week, which disappeared after operating with 2 CM (< 400 mA) \rightarrow Discharges on coupler window \rightarrow (500 mA with 2 CM)?

→ New coupler design (P > 300 kW), developed in collab. CERN/ESRF/SOLEIL → 500 mA with 1 CM (redundancy)

SR operational experience

Cryogenic system

- ~ 100 % operational availability, but for a while, difficulties in maintaining the CM LHe level → transfer line too deeply pushed into the Dewar!
- Losses of utilities (electr., water) → long restarts (few hours)
 - → Spare He compressor station with separate utilities (install., beg. 2010)
 - → Redundancy in operation and easier maintenance

RF power amplifiers

- Proved to be very reliable: after ~ 18 000 running hours, over + 3 years, only 3 short beam dead times → ~ 100 % operational availability
- Module failure rate of ~ 3.5 % per year → ~ no impact on the operation → Matter of maintenance: 1 hour @ each shutdown for ~ 10 mod. repair

Significant improvement expected from the new generation modules with more robust transistors and less thermal stress

Summary & conclusions

After ~ 3.5 years of operation, result globally satisfying:

- For the BO RF, no pb at all
- In SR, for the first 2 years, using a single CM, only 5 % of dead time due to RF
- The third year, with the commissioning of CM2, it has nearly tripled
- Last 8 months \rightarrow 4 %
- Significant improvements expected from the corrective actions:
 - → Upgrade of the CM frequency tuners
 - → Installation of a spare He compressor station
- Longer term → Upgrade of the power couplers (collab. with CERN & ESRF)
 - → Replace the actual amplifier modules by the 700 W generation

R&D with solid state amplifiers:

- ESRF contract with ELTA → 352 MHz
- Collaborations (LNLS, SESAME) → ~ 500 MHz
- L and VHF bands

Acknowledgements

SOLEIL RF and LINAC group

Fernand RIBEIRO

Patrick MARCHAND

Ti RUAN

Jean-Pierre POLLINA

Robert LOPES

Massamba DIOP

Rajesh SREEDHARAN

Marc LOUVET

Nicolas GUILLOTIN

Jean-Pierre BAETE

Julien SALVIA

Helder A. DIAS

Jocelyn LABELLE

Moussa EL AJJOURI

Cyril MONNOT

+ SOLEIL, CERN, CEA