Summary & Discussion Low emittance design and tuning S.Guiducci, C.Steier, A.Streun

- Common challenges and questions
- Nonlinear dynamics: Tools and measurements
- Vertical emittance: common issues

Common challenges

	PDR	DR (CLIC)	DR (ILC)	LS	PF (superB)
Horizontal acceptance	10 mm mrad?	1	10 mm mrad	10 mm mrad	3 mm mrad
in sigma		1	140	300	30
Vertical acceptance	10 mm mrad?	1	10 mm mrad	1 mm mrad	0.2 mm mrad
in sigma		1	2200	300	140
Energy acceptance	3%	<1%	<1%	35%	>1%
Current	low	< 0.5 A	0.5 A	~0.5 A	23 A
Lifetime	1	1	1	10 hrs	~10 m in
Horizontal emittance	~10 nm?	0.1 nm	0.5 nm	0.1 nm	<3 nm
Vertical emittance	~30 pm?	0.5 pm	2.0 pm	~10 pm	<10 pm
Energy spread	0.10%	0.10%	0.15%	0.10%	0.10%
Energy	3 GeV	3 GeV	5 GeV	36 GeV	38 GeV

Injection schemes: accumulation / septum ⇔ on-axis

Emittance minimization: arc cells (MBA ⇔ TME ⇔ LGB) ⇔ damping wigglers

Methodology (interplay): lattice design (linear ⇔ nonlinear) ⇔ collective effects

Nonlinear dynamics

- Code comparison: lessons learned?
- Catalog of standard measurements (taken from Louis Emery / Riccardo Bartolini list)

Energy (spin depolarisation)
Momentum compaction
Dispersion
Natural chromaticity
Nonlinear dispersion
Detuning with momentum
Detuning with amplitude

Apertures (on/off momentum and engineering apertures)
Lifetime
Frequency Maps (x –z and x –dp/p)
Resonance driving terms
Chromatic phase advance

- ⇒ Possible collaborations ?
- Genetic algorithms....
 - simultaneous linear/nonlinear optimization

Effect of IDs

Integrated lattice & collective effect design

Vertical emittance: common issues

- Requirements
 - natural limit (iso-mag.)

- $\varepsilon_{y} \approx 0.2 \, pm \left\langle \beta_{y} \right\rangle_{MAG} / \rho$
- LS and PF goals: few pm
- DR: ~ 0.5 pm (CLIC), 2 pm (ILC)
- Measurements
 - pinhole with point-spread functions (Diamond)
 - visual polarized light (SLS)
 - 100 keV profile monitors (ESRF)
- Tuning algorithms
 - optics correction using LOCO
 - optics corrections based on turn by turn data
 - skew quadrupole schemes
 - girder alignment and sextupole centering
- Drifts and long term stability
 - orbit (and other) feedback

Table taken from: Riccardo Bartoloni / Opening session:

"state of the art": lattices with coupling 0.1% and $\epsilon_{\rm v}$ < 5 pm,

	Model emittance	Measured emittance	β-beating (rms)	Coupling* (ϵ_y/ϵ_x)	Vertical emittance
ALS	6.7 nm	6.7 nm	0.5 %	0.1%	4-7 pm
APS	2.5 nm	2.5 nm	1 %	0.8%	20 pm
ASP	10 nm	10 nm	1 %	0.01%	1 pm
CLS	18 nm	17-19 nm	4.2%	0.2%	36 pm
Diamond	2.74 nm	2.7-2.8 nm	0.4 %	0.08%	2.2 pm
ESRF	4 nm	4 nm	1%	0.25%	10 pm
SLS	5.6 nm	5.4-7 nm	4.5% H; 1.3% V	0.05%	2.8 pm
SOLEIL	3.73 nm	3.70-3.75 nm	0.3 %	0.1%	4 pm
SPEAR3	9.8 nm	9.8 nm	< 1%	0.05%	5 pm
SPring8	3.4 nm	3.2-3.6 nm	1.9% H; 1.5% V	0.2%	6.4 pm