Experimental Studies of fast ion instability in the ATF damping ring

- History
- Recent Emittance Recovery/Measurement
- Improvements/Upgrades of monitors
- R&D plans/schedule

Nobuhiro Terunuma (KEK)

LER2010, Jan. 13th, 2010, CERN(WebEx)

KEK Accelerator Test Facility (ATF)

Multi-bunch electron beam structure

Number of bunches from the RF Gun is controlled by changing the Laser pulse structure.

Linac: 1.3 GeV, 1.56 Hz, $\sim 2 \times 10^{10}$ electrons / bunch $1 \sim 20$ bunches/pulse(train) with 2.8ns spacing by 357MHz laser and

1 ~ 10 bunches/pulse(train) with 5.6ns spacing by 178.5MHz laser for Fast Kicker R&D, will be available in October 2009.

Brief History of Vertical Emittance in the ATF damping ring

Concentrated on the generation of the low emittance multi-bunch beam (1996~2004)

2003: Confirmed 4pm emittance for single bunch and found emittance blowup for multi bunch

Beam monitor developments (2004~2007)

Cavity BPM (resolution: C-band 17nm, IP-BPM 9nm)

Laser wire, Intra-train feedback, XSR, ...

did not fully care the low emittance then found the emittance was 30pm or more

Emittance recovery under the ATF2 construction (2007~2009)

~2008: ATF2 construction

2009: recovered as less than 10pm

Low emittance beam (2010~)

DR BPM upgrade for 1pm emittance Low emittance beam for ATF2, Fast ion study, ...

FII study on 2007/3/13-14 (1)

Vertical emittance of 20 bunches in ATF DR

Table 2: vacuum pressure m 2004 ion pump status 11mA 26mA 31mA normal 4.0×10^{-6} Pa 6.0×10^{-6} Pa 6.5×10^{-6} Pa

Table 1. vacuum pressure in the measurements				
ion pump status	5mA	$10 \mathrm{mA}$	$20 \mathrm{mA}$	
normal	$4.6 \times 10^{-7} \text{ Pa}$	$5.9 \times 10^{-7} \text{ Pa}$	$1.0 \times 10^{-6} \text{ Pa}$	
south straight OFF	$2.0 \times 10^{-6} \text{ Pa}$	$2.7 \times 10^{-6} \text{ Pa}$	$5.5 \times 10^{-6} \text{ Pa}$	
both arcs and south straight OFF	$3.4 \times 10^{-6} \text{ Pa}$	$5.2 \times 10^{-6} \text{ Pa}$		

Single bunch was less than 10pm.

Bunches in front are already bigger.

Single bunch is also bigger.

FII study on 2007/3/13-14(2)

Figure 7: emittance of multi-bunch beam at $5\mathrm{mA}/20\mathrm{bunches}$

Figure 8: emittance of multi-bunch beam at $10\mathrm{mA}/20\mathrm{bunches}$

Figure 9: emittance of multi-bunch beam at 20mA/20bunches

We measured emittance of each bunch in a 20-bunch beam in the DR with a laser-wire monitor. No clear emittance blow-up along a train was observed up to 20mA/train.

One of the reason may be the bigger vertical emittance compared with the data taken in 2004.

Emittance Works for ATF DR

Hardware issue

Re-alignment of DR magnets in summer shutdown
Beam size monitor improvement → following slides

Beam tuning method

β beat correction

Correction with QM18R.1&QM15R.2 trim.

Dispersion correction

 η_x in straight section is corrected by QM trim

 η_{v} is corrected by correctors

Coupling correction

Correction of vertical leakage of the horizontal kicks by a couple of horizontal correctors.

Correction is done by Skew Q winding trim coil of SX.

S.Kuroda, 9th ATF TB/SGC meeting 2009/12/16

DR Emittance Summary (single bunch)

Measured vertical emittance (2009 Dec) XSR=8.56±0.46 pm, IF=8.43±1.79 pm,

 $LW_{00} = 3.50 \pm 1.78 \text{ pm}$, $LW_{01} = 2.00 \pm 1.61 \text{pm} \leftarrow \text{under the poor laser intensity}$

multi-bunch beam size, 2009may19

0.4x10¹⁰/bunch

Multi-bunch was not well tuned.

0.3x10¹⁰/bunch

0.1x10¹⁰/bunch

Table 2: vacuum pressure in 2004					
ion pump status	11mA	$26 \mathrm{mA}$	31 mA		
normal	$4.0 \times 10^{-6} \text{ Pa}$	$6.0 \times 10^{-6} \text{ Pa}$	$6.5 \times 10^{-6} \text{ Pa}$		

We observed a beam-size growth of 50%. It becomes clear than the result of 2007.

Performance of XSR monitor

- 1. Used as a real time monitor for DR beam tuning.
- 2. Measured image is a superposition of the multi bunches during 20 ms.

Monitor performance: (single bunch)

Beam size measurement was limited ~6um in past. It was improved and could reach ~4um in 2009, which is not yet limited by the monitor.

Laser wire beam size monitor in DR

300mW 532nm Solid-state Laser fed into optical cavity

14.7µm laser wire for X scan
5.7µm for Y scan
(whole scan: 15min for X,
6min for Y)

Upgrading the Laser Wire system

(1) Non-storage mode

- Past measurements were done by storage mode in DR. It means the dedicated beam time is necessary.
- Measurement under the non-storage mode was prepared for the parasitic measurement under the other R&D programs, ATF2, etc.
- Longer accumulation time is needed at present.

(2) Higher order mode

- Smaller laser wire
- Lower laser intensity

(3) Increase the laser intensity (x3 or more)

- New fiber laser is under testing.
- faster beam-size scanning (< a few min) and improve the measurements.

About the Multi-bunch operation in ATF DR

- Most of the R&Ds request a single-bunch beam
 - As a result, ATF is usually optimized for a single bunch beam.
 - It does not well match for the multi bunch beam, especially for the injection to DR and storage. (due to the beam loading, etc.)
- A few R&D programs request a multi-bunch beam.
 - Fast Ion Study
 - Compton γ-ray generation by Laser Cavity for pol-positron source
 - Multi-bunch extraction by Fast Kicker
 - Intra-train nano seconds feedback by FONT (near future)
- Injection and storage of the <u>intensity-flat</u> multi-bunch beam
 - We need a dedicated time for multi-bunch beam tuning before above R&Ds.
 - Multi-bunch beam is much sensitive to the environment issues at ATF, such as drift of the cooling water temperature in Linac.
 - Improvements are continued for the cooling water stability, RF compressor, etc.

Plan of FII R&D

- 1. We need to arrange the time for MB operation.
 - Beam time assignment: ATF (50%) and ATF2 (50%)
 - ATF includes the R&Ds for ...
 Low emittance, Cavity Compton, fast ion, fast kicker, ...
 - Once per week or two weeks for FII study seems to be fine.
- 2. Re-confirmation of the results in 2004 is first step.
 - check the consistency etc.
- 3. Measurement by changing the ionization condition
 - beam intensity, ion pump ON/OFF, Gas injection,...

Summary

- Vertical emittance in DR is almost recovered about less than 10 pm. It should be maintained for all studies.
- Fast ion study should be well scheduled with other ATF/ ATF2 programs.
- Multi-bunch beam tuning should be well done just before the FII study.
- Local and remote participation for FII beam study is welcome.