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At CESR-TA, we have made measurements of bunch-by-bunch coherent tune
shifts along bunch trains, over a wide range of beam energies, emittances, bunch
currents, bunch spacings, and train lengths, for both positrons and electrons.

These measurements have been done by exciting coherent oscillations of whole
trains using a single-turn pinger, by observing the tune of self-excited bunches
using the Dimtel feedback system diagnostics, and by exciting individual bunches
using a fast kicker.

Postulating that the tune shifts are induced by a photoelectron-seeded electron
cloud, we have compared the tune measurements with predictions from two
electron cloud (EC) simulation programs: POSINST and ECLOUD.

The comparisons have been used to put constraints on the EC model parameters
in these codes.

Together with local direct measurements of the electron cloud using retarding
field analyzers and TE-waves, we hope to develop a robust EC model, well tested
experimentally, which can be used to predict with confidence the features of the
electron cloud effect in future LC damping rings.
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* Brief review of key elements of the simulation
programs

 Methodology for computation of the coherent
tune shifts

 Comparisons of data and simulations;
extraction of cloud model parameters

e Future work

1/13/10 LER 2010 CERN 3



) Cornell Universit }
Q«; Lgll;gfator;u;err;e}r’nentary-Particle PhysicsC I O u d m O d e I . key e I e m e n tS

The key elements of the model used to compute the growth of the electron cloud
are
— Synchrotron radiation parameters: direct and reflected photon rates
* We are developing a simulation program (SYNRAD3D) which computes
the direct and reflected synchrotron radiation distributions around the
CESR-TA ring. (We have not yet incorporated the predictions for photon
reflection into our cloud simulations).

— Photoelectron (PE) model: quantum efficiency and photoelectron energy
spectrum
* The current PE model in POSINST and ECLOUD is very simple and can be
developed further.
— Secondary emission (SE) model: yield and secondary electron energy
spectrum

* The SE models in POSINST and ECLOUD are well-developed. Bench
measurements provide guidance on the SE model parameters.
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Photons are generated in dipoles and wigglers in a real lattice, and
allowed to scatter or be absorbed in vacuum chambers, based on X-
ray scattering data from an LBNL database
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Example output from SYNRAD3D:
Laboratory for Elementary-Particle Physics Azimuthal location of photon absorption sites

Cornell University

Element-averaged azimuthal distribution of photon absorption sites
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* The key SE parameters are the total yield (black), and the components (true
secondaries, elastics, and rediffused). In POSINST, the most important model
parameters are the total peak yield (SEY), the energy corresponding to the peak for
the true secondaries, the peak elastic yield, and the yield of rediffused electrons.
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near the primary energy.
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Methodology for computation of the
coherent tune shifts

* Given a set of beam and EC model parameters (beam intensity, energy, and emittances;
bunch train configuration, PE and SE model parameters, etc.), the EC simulation codes can
be used to compute the cloud density experienced by each bunch in the train, for a given
magnetic and vacuum chamber environment.

* From this cloud density, we compute the electric field experienced by a bunch passing
through the cloud. The coherent tune shift depends on the gradient of this field, integrated

around the ring: _
e OFz(y)

AQz(y) = 17 ]{ ds Bo)Got)  U20) T Gy

 The field gradients, obtained from simulations using the computed radiation intensities

I(k,i) at location i, are weighted by the lengths and beta functions, and summed over all m
element types to give the total tune shift:
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We calculate the direct radiation intensities from a lattice model, but (for now) use a
free parameter to describe the reflected photons.

We only include drifts and dipoles (for now).

To fully include the cloud dynamics, we compute the field gradient by running two
simulations, with the bunch whose tune we are calculating (and previous bunches, if
the whole train was coherently excited) offset by small amounts +9, find the cloud-
generated electric field for the two offsets, and compute the difference of the fields.
For example, in the x-direction, for bunch b, excited coherently with bunch b-1,

Em(:cb = 5, Th—1 — 5, ey Yp = 0) — Em(a:b — —5, Tp—1 — —5, ey Yp = 0)
20

The bars represent the fact that the electric fields are weighted transversely and
longitudinally by the (Gaussian) beam distributions, corresponding to the force which
drives coherent motion of the bunch.

The horizontal tune shift in the dipoles is quite different for the case of coherent
excitation of the whole train, vs. individual excitation of single bunches. This effect is
clearly seen in the data and simulations.
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* For coherent tune shift data taken in 2007, June/July 2008, and January/February 2009, we
have run simulations for a range of EC model parameters describing the drifts and dipoles,
to establish the best fit ranges of these parameters.

* For these data sets, the tune measurements were made by coherently exciting the whole
bunch train (and witnesses, if any). Tune shifts are always relative to the tune of a reference
bunch at the start of the train.

* The data were compared with simulations to determine 6 EC model parameters: peak SEY,
photon reflectivity, guantum efficiency, rediffused yield, elastic yield, peak secondary
energy.

2007-08 data: short trains and witnesses

E (Gev) Bunch T | h Wi | h D 2009 data:
nergy (Gev unch currents rain lengt itness lengt ata

trains of
1.9,2.1 Positrons 0.25,0.5,0.75  3,10,11, 19, _
1.0,1.25,3.0 20, 21 positrons and
1.9,2.1 Electrons 0.25,0.5,0.75,  10,11,19,20,  5-15 - electrons, with
1.0, 1.25, 3.0 21 bunch
currents from
5.3 Positrons 0.75,1.5,5.0 3,10 5-10 3 0.4 to 1.5 mA/
53 Electrons 1.5 10 10 1 bunch.
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Example: June 2008 positron data, 21 bunch train,

Cornell Universit .
Laboratory for Ele}r’nentary—Particle Physics 14 ns s pacing, 0.8x1010 / bunch
Peak SEY scan
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Example: 2007 electron data, 10 bunch train, 14 ns
spacing, 1.2x10'%/bunch
Peak SEY scan

Cornell University

Laboratory for Elementary-Particle Physics

Plot of coherent tune shifts in kHz (1 kHz ~ 0.0025), vs.
bunch number, observed in a train of 0.75 mA/bunch
electrons at 2 GeV. 10 bunch train, followed by 13 witness
bunches. Data (black) compared to POSINST simulations.
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Examples: Feb 2009 positron data,

Cornell University

Laboratory for Elementary-Particle Physies45 punch trains, 14 ns spacing, various bunch currents
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Cornell University Systematic analysis of data sets to extract best-fit
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peak SEY parameter
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Cornell University Results of simulation comparisons:

Laboratory for Elementary-Particle Physics 5 El ectron Cl ou d m Od e | p arameters
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With appropriate care taken
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We have also simulated tune data taken in June 2009, with 4 ns spacing. This data is taken using
our Dimtel feedback system, which measures the coherent tunes of bunches without coherently
pinging the whole train. Under these conditions, the horizontal tune shift can be very large.

field gradients Simulation 1: 1~1-5—1[10-20] ® Dn:ﬁ - Dip Ole ® Dn:ﬁ + Dipo’e
field gradients Simulation 2: 1-1-5.2—1[10-20] 1 0 I I
A Q(kHz) .
Cloud density in a dipole at * 9| AQ, (kHz) r. 2
end of train ~ 1013/m3 * 8
8 ; ¢ 7 P
¢ s
SEY=2.0 . " 6 ECLOUD 5
6 SEY=22 3 ! : ; 5 s !
R 4 R
4 8.7
begt ast 3 o> oM°
¢ ¢ . a9
2 POSINST “Q:i{.:’i; 2 ...o ’...P
‘s e b0 1 n..q.’?"‘;
SRS AR <+ 11,
,;i.ii--i:i' ‘ Bunch o_h.;.n!.!ﬁﬂmmnm!_uﬂ!!_
0 50 100

Time (ns)

Plot of coherent tune shifts in kHz (1 kHz ~ 0.0025), vs. bunch number, observed in a train of
32 bunches at 2.1 GeV, 0.8 mA/bunch, with 4 ns spacing. Data (black) compared to POSINST
simulations (left) and ECLOUD (right). Simulated tune from field gradients at start of the
bunch.
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Dec. 2009 data: Coherent tune shifts
with individual bunch excitation

Cornell University
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Coherent tune shift
2 GeV 2 mA/bunch positrons
Individual bunch excitation
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Dec 2009 data: Coherent tune shift of last
bunch in a train, vs. its current
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In this experiment, we generate a cloud from 9 bunches, then vary the current in
bunch 10 and measure its tune shift (relative to an equal-current bunch 1120 ns later).

Coherent tune shifts of last bunch in train
vs. bunch current
2 GeV positrons
Bunch 10—Bunch 11

Individual bunch excitation @ Horizontal

AQ (kHz)
20 -

» . Vertical
15+

[ | ] -

|

Lo POSITRONS, 2.1 GeV

[ ® @ ° °
0.5

» Bunch
OO s T e s T 0 cument(ma)

* Bunch spacing is 14 ns for bunches 1-10; bunch 11 is 1120 ns later than bunch 10
» Bunch currents in bunches 1-9 were fixed at 2 mA/bunch, while bunch currents in
bunches 10 and 11 were varied together.

» \We see essentially no dependence of the tune difference between 10 and 11 on
bunch current.
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* Expand the data set comparisons with EC model (we have a lot more data
than shown here).

* Take more data at 4 ns, 8 ns, 12 ns spacings. Continue study of tune of last
bunch in the train. Explore dependence of tune shifts on beam emittance.

* Use solenoids in drifts to sort out drift/dipole contributions experimentally.
Measure tune shift dependence on wiggler current.

* Improve the EC model by incorporating results from photon reflection
simulations and an improved photoemission model.

* Compute tune shifts from quadrupoles and wigglers (3D simulation needed
for this).

 Compare with results from local measurements (RFA, TE-wave) in the same
vacuum chamber environment.
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