

Design of Damping Rings for Linear Colliders

S. Guiducci

LER10 January 12, 2010

ILC DR Requirements

Number of bunches	2625
Number of particles per bunch	2x10 ¹⁰
Repetition frequency (Hz)	5
Normalized e ⁺ injected emittance $\gamma \epsilon_{x,y}$ (m)	0.01
Energy acceptance	±0.5%
Normalized horizontal extracted emittance $\gamma \epsilon_x (\mu m)$	< 8
Normalized horizontal extracted emittance $\gamma \epsilon_x$ (µm)	0.02
RMS relative energy spread	< 0.15%
RMS bunch length (mm)	6

Circumference

- Given by the number of bunches and the minimum achievable bunch distance T_b
- Limits come from:
 - kickers pulse duration
 - Instabilities limiting the maximum stored current, in particular the e-cloud instability in the positron ring
- Since the first GDE meeting Snowmass 2005:
- T_b (ns) = 20 \Rightarrow 12 \Rightarrow 6
- C (km) = $17 \Rightarrow 2x6.9 \Rightarrow 6.4$

Proposed for SB2009

Layout

Racetrack layout determined by the most efficient use of tunnel and access shafts, concentrated in two straight sections

Higher ring periodicity helps to increase dynamic aperture

Damping time

- Energy = 5 GeV ⇒ no emittance blowup due to space charge effects
- For a 6.4 km ring at 5 GeV wigglers are needed to get the proper damping time
- Beams stored for ~7 τ_d to have extracted emittance ≈ equilibrium emittance
- $\tau_{\rm d} \le 200/7 \le 28 \text{ ms}$
- Wigglers are also useful in reducing the emittance

ILC DR wigglers

 Extensively used to reduce damping time and emittance and to mitigate IBS effect

•CESR-c type superconducting wiggler: good aperture, very good field quality and proven performance.

- Number of wigglers 88
- Peak field 1.6 T
- Period 0.40 m
- Unit length 2.45 m
- Vertical aperture 5 cm
- •Pole width 20 cm

Lattice Evaluation TILC08, Sendai

- 4 lattices OCS8, FODO4, FODO5, DCO were evaluated on 8 criteria:
 - Lattice Design and Dynamical Properties
 - Conventional Facilities and Layout
 - Magnets, Supports and Power Supplies
 - Vacuum System and Radiation Handling
 - RF System
 - Injection and Extraction
 - Instrumentation and Diagnostics
 - Control System, Availability and Reliability
- Rankings were very similar, all the lattices were satisfying the requirements
- Differences were driven by items that affect cost, availability and reliability (eg, clustering of major components near the two proposed access shafts)

The DCO lattice was recommended as baseline

SB2009 - 3.2 km ring

- In 2009 it has been studied an ILC parameter set with a reduced number of bunches 1300
- This allows to reduce the DR circumference to 3.2 km
- The bunch separation and the number of particles per bunch remain the same, and the beam current in the ring is the same
- From the view point of beam dynamics we expect essentially the same performance as the 6.4 km ring

01/12/09 LER10 8

ilc IICLayout of the 3.2km damping rings

- Injection/extraction lines of the two rings are superimposed
- RF cavities: 18 ⇒ 8
- Wigglers: 80 ⇒ 32

ILC DR Main Challanges

- Large Acceptance (large e+ injected emittance, no predamping ring)
- Ultra low emittance
- Control of electron cloud effect in positron DR
 - Vacuum chamber coating
 - Solenoids
 - Clearing electrodes
- Control of the fast ion instability in the electron DR
 - Pressure below 1 nTorr
 - Gaps in the ring fill pattern
 - Fast feedback systems
- Developing a very fast rise and fall time kicker for single bunch injection and extraction in the ring.

ILC DR Test facilities ATF

Generation of low emittance beam,

Fast kicker Experiment

Pulse source(FID FPG 10-6000KN)

Maximum output voltage ±10 kV

Rise time @ 10-90% level - < 1 ns

Rise time @ 5-95% level - < 1.2 ns

Pulse duration @ 90% - 0.2-0.3 ns

Pulse duration @ 50% - 1.5-2 ns

Output pulse amplitude stability – 0.5-0.7%

ILC DR Test facilities CesrTA

Attain sufficiently low vertical emittance to enable exploration of

- dependence of electron cloud on emittance
- emittance dilution effect of e-cloud
- Comparisons of EC mitigations:
 - Environments: Drift, Wiggler
 - Chamber Surfaces: Al, Cu, TiN coating, amorphous carbon coating
- Simulations and Measurements:
 - Electron densities including Retarding Field Analyzers effects
 - TE wave measurements
 - Coherent tune shifts for e+ and e-
 - 3D wiggler simulations

- To give a recommendation on the feasibility of a shorter damping ring by comparing the electron cloud build-up and instability for the 6.4km and 3.2km rings with a 6 ns bunch spacing by March 2010, then
- Following the CesrTA program or by ECLOUD'10, to give our recommendation on e- cloud mitigations and evaluate the electron cloud in the shorter 3.2 km ring with a 3 ns bunch spacing.
- Furthermore starting late 2010, to fully integrate the CesrTA results into the Damping Ring design.

01/12/09 13 LER10

DR design goals and challenges

PARAMETER	NLC	CLIC
bunch population (109)	7.5	4.1
bunch spacing [ns]	1.4	0.5
number of bunches/train	192	312
number of trains	3	1
Repetition rate [Hz]	120	50
Extracted hor, normalized emittance [nm]	2370	<500
Extracted ver. normalized emittance [nm]	<30	<5
Extracted long. normalized emittance [keVm]	10.9	<5
Injected hor. normalized emittance [µm]	150	63
Injected ver. normalized emittance [µm]	150	1.5
Injected long, normalized emittance [keV.m]	13.18	1240

- Design parameters dictated by target performance of the collider (e.g. luminosity), injected beam characteristics or compatibility with the downstream system parameters
- Most parameters are driven by the main linac RF optimization
- In order to reach ultra-low emittance, CLIC DR design is based on the inclusion super-conducting wigglers
- Output emittance is dominated by Intrabeam Scattering (IBS) due to high bunch charge density and instabilities may be triggered due to a number of collective effects (e.g. e-cloud, fast ion instability)

Y. Papaphilippou LCWAS09

-Damping ring energy

- Scaling of emittances with energy obtained with analytical arguments and numerical integration for including the effect of IBS
- Longitudinal emittance kept constant
- Broad minimum for horizontal emittance @ 2-3GeV
- Higher energy reduces ratio between zero current and IBS dominated emittance
- Vertical emittance increases linearly with energy (tighter alignment and low emittance tuning tolerances)
- aperture in terms of beam sizes as lower geometrical emittance at high energy compensates increase of magnet strength.
- Increase of energy loss per turn and radiated power increased RF voltage, higher beam loading)
- Collective effects get relaxed (especially space-charge)
- Increase the DR energy to 2.86GeV

CLIC DR lattice

1.5 2.0

2.5 3.0

0.02

0.01

4.0

3.5 4.

- Increasing space, reducing magnet strengths
- Reducing chromaticity, increasing DA
- IBS growth rates reduced, i.e. zero current equilibrium emittance increased but IBS dominated emittance not changed
- Combined function bends with small gradient (as in NLC DR and ATF)

0.5

1.0

2.7

1.8

0.9

Wigglers' effect with IBS

- W			
Parameters	BINP	CERN	
B _{peak} [T]	2.5	2.8	
$\lambda_{ m w}$ [mm]	50	40	
Beam aperture full gap [mm]	13	13	
Conductor type	NbTi	Nb ₃ Sn	
Operating temperature [K]	4.2	4.2	

- Stronger wiggler fields and shorter wavelengths necessary to reach target emittance due to strong IBS effect
- Two wiggler prototypes
 - 2.5T, 5cm period, built and currently tested by BINP
 - 2.8T, 4cm period, designed by CERN/Un. Karlsruhe
- Current density can be increased by using different conductor type
- Prototypes built and magnetically tested (at least one by CDR)
- Installed in a storage ring (ANKA, CESR-TA, ATF) for beam measurements (IBS/ wiggler dominated regime)
- Major DR performance item

Collective effects in the DR

- Electron cloud in the e⁺ DR imposes limits in PEY (99.9% of synchrotron radiation absorbed in the wigglers) and SEY (below 1.3)
 - Cured with special chamber coatings
- Fast ion instability in e⁻ DR, molecules with A>13 will be trapped (constrains vacuum pressure to around 0.1nTorr)
- Other collective effects in DR
 - Space charge (large vertical tune spread of 0.19 and 10% emittance growth)
 - Single bunch instabilities avoided with smooth impedance design (a few Ohms in longitudinal and MOhms in transverse are acceptable for stability)
 - Resistive wall coupled bunch controlled with feedback (1ms rise time)
- For CDR
 - Update studies with newest parameter set including 3D photon distribution in wiggler section
 - Estimate impedance of a few key components

G. Rumolo et al., EPAC08

Chambers	PEY	SEY	ρ [10 ¹⁰ ∈ /m²]
	0.000576	1.3	0.04
Sec. Color		1.8	2
Dipole		1.3	7
0.0	0.0576	1.8	40
	0.00109	1.3	0.6
	Wiggler 0.109	1.3	45
Wiggler		1.5	70
		1.8	80

DR RF system

A. Grudiev, CLIC08

- RF frequency of 2GHz
 - ☐ Power source is an R&D item at this frequency
- High peak and average power of 6.6 and 0.6MW
- Strong beam loading transient effects
 - ☐ Beam power of ~6.6MW during 156 ns, no beam during other 1488 ns
 - ☐ Small stored energy at 2 GHz
- Wake-fields and HOM damping should be considered
- A conceptual RF design should be ready for the CDR

YP., 02/10/2009 LCWA 2009

CLIC DR parameters		
Circumference [m]	493.05	
Energy [GeV]	2.86	
Momentum compaction	0.6x10 ⁻⁴	
Energy loss per turn[MeV]	5.9	
Maximum RF voltage [MV]	7.4	
RF frequency [GHz]	2.0	

- High energy loss per turn at relatively low voltage (keeping longitudinal emittance at 5keV.m) results in large φ_s
 - ☐ Bucket becomes non-linear
 - ☐ Small energy acceptance
 - ☐ RF voltage increased to 7.4MV (energy acceptance of 2.6%)
 - ☐ As longitudinal emittance is decreased (3.9 keV.m), horizontal emittance increased to 480nm

ILC/CLIC DR Parameters 2009

	ILC	CLIC
Energy (GeV)	5	2.9
Circumference (m)	3238	493
Bunch number	1300	312
N particles/bunch	2x10 ¹⁰	4.1x10 ⁹
Bunch distance (ns)	6.2	0.5
Average current (mA)	387	125
Bunch peak current (A)	25	21
Damping time τ_x (ms)	24	1.6
Emittance $\gamma \epsilon_{x}$ (nm)	5300	390
Emittance $\gamma \epsilon_{x}$ (nm)	20	4.9
Momentum compaction	1.3 x10 ⁻⁴	0.6 x10 ⁻⁴
Energy loss/turn (MeV)	4.4	5.8
Bunch length (mm)	6.0	1.4
RF Voltage (MV)	7.5	7.4
RF frequency (MHz)	650	2000
Betatron tunes Q _x , Q _v		
Natural chromaticity x/y	-100 / -63	-149 / -79

Common issues

- Low Emittance Tuning
- Collective effects:
 - e-cloud
 - Fast ion
 - IBS
 - Impedance related effects
- Wiggler dominated ring
- Beam diagnostics

Conclusions

- Main issues are related to:
 - Low emittance
 - Short bunch distance
 - High current
 - Stringent requirements on the stability of the extracted beams
 - Beam instrumentation
- These are common between ILC and CLIC but also with the new SL sources and the new project of ultra high luminosity B-factories
- The objective of this meeting is to exchange experiences and find synergies