Wiggler optimization and radiation absorption scheme in light sources and damping rings

Konstantin ZOLOTAREV

Budker Institute for Nuclear Physics, Novosibirsk, Russia

Main issues

- SR absorption problems overview
- SR loads simulation approaches for multiwiggler sections
- SR absorption systems, specific features
 - PETRA-III
 - CLIC-DR
 - ILC-DR
- Summary

Problem overview

	PETRA-III	CLIC-DR	ILC-DR
Beam energy, GeV	6	2.86	5
Average current, mA	200	170	400
Number of wiggler (in one section)	10	38	88
SR wiggler power, kW	42.1	11 – 12	39.7
Total SR power in one section, kW	421.1	420 – 460	3494

Possible solutions

Code for calculation of SR power loads for SR absorbers

 $\frac{dP}{d\Omega} = \frac{d^2P}{d\theta \ d\psi} = P_T \frac{21\gamma^2}{16\pi K} G(K) f_K(\gamma \theta, \gamma \psi)$ $f_K(\gamma \theta, \gamma \psi) = \sqrt{1 - \left(\frac{\gamma \theta}{K}\right)^2} \left\{ \frac{1}{\left(1 + (\gamma \psi)^2\right)^{\frac{5}{2}}} + \frac{5(\gamma \psi)^2}{7\left(1 + (\gamma \psi)^2\right)^{\frac{7}{2}}} \right\}$

 $P_T[kW] = 0.633 \cdot E_e^2[GeV] \cdot B^2[T] \cdot L[m] \cdot I[A]$

$$G(K) = K \frac{K^{6} + \frac{24}{7}K^{4} + 4K^{2} + \frac{16}{7}}{\left(1 + K^{2}\right)^{\frac{7}{2}}}$$

K.-J. Kim, Nucl. Instr. And Meth A246(1986)

For design and optimization of Petra-III damping section a special codes were developed for SR power load simulations. The codes performs a following actions:

- Ray tracing technique for accounting of absorber shadows
- Parametric optimization of absorber shape
- COD and elements misalignments accounting
- 3D modeling of complicated absorber shape
- Adaptive triangular meshing of internal absorber surface for precise integration of power density

PETRA-III absorber system

Main mashie parameters

Beam energy, GeV	6
Average current, mA	200
Number of wiggler (in one section)	10
SR wiggler power, kW	42.1
Total SR power in one section, kW	421.1

Permanent magnet wiggler parameters

Peak field, T	1.56
Period, cm	20
К	29.51
Number of wiggler (in one section	10
Wiggler length, m	4
Magnetic gap, mm	24
Vertical aperture, mm	17

Regular absorber design for PETRA-III DWS

Regular absorber design for PETRA-III DWS

Slit 5, Max 142.935086 W/mm², Σ=2.077985(↑0.860627↓1.217358)kW

Long and final absorbers sectioning

14.01.2010

9

6000

Wiggler VC design and power load

Petra-III DWS commissioning

Comparising (calculation and measurement)

CLIC-DR absorber system

Superconductive wiggler parameters

Main mashie parameters

Beam energy, GeV	2.86
Average current, mA	170
Number of wiggler (in one section)	38
SR wiggler power, kW	11 – 12
Total SR power in one section, kW	420 – 460

Coil material	Nb ₃ Sn	NbTi
Peak field, T	2.8	2.5
Period, cm	4	5
К	11.7	10.5
Wiggler length, m	2	2
Magnetic gap, mm	12	15
Vertical aperture, mm	?	12

14.01.2010

SR power evacuation strategy

Even number wiggler VC load distribution, P=9.4 W

Horizontal collimator design

14.01.2010

ILC-DR vacuums chamber

ILC-DR vacuums chamber Internal view from first wiggler center

Summary

- The problem of safe and reliable absorption and evacuation of the SR power is a one key problem in damping wiggler section design procedure.
- For design and optimization of Petra-III damping section a special codes were developed for SR power load simulations.
- This code was use for preliminary design of the absorber systems of CLIC and ILC damping rings and can be used for final design and optimizations

Thank you for attention