HIGH FIELD WIGGLER PERFORMANCE AT PETRA III

Alexander Kling

MPY - DESY

Workshop on Low Emittance Rings

CERN, January 2010

QUICK REMINDER: PETRA III

QUICK REMINDER: PETRA III

2 REVIEW OF WIGGLER DESIGN AND PARAMETERS

3 Experience from Commissioning

ALEXANDER KLING (MPY - DESY) WIGGLER PERFORMANCE AT PETRA III

3 Experience from Commissioning

OUTLINE

QUICK REMINDER: PETRA III

2 Review of Wiggler Design and Parameters

3 Experience from Commissioning

4 CONCLUSIONS

OVERVIEW

FIGURE: Schematic overview of PETRA III showing the distribution of the main components in the straight sections.

PARAMETERS:

Parameter	Value	Unit
Energy	6.0	GeV
Circumference	2303.952	m
Q_x, Q_y	36.12, 30.28	-
Nat. Chromaticity	-42.7/-42.3	-
Energy Spread (w.(wo) Wiggler)	$1.3(0.8) imes 10^{-3}$	-
Hor. Emittance (w/wo. Wiggler)	1.0 / 4.65	nm rad
Bunch Length (w/wo. Wiggler)	13 / 8	mm
Energy Loss per Turn (w/wo. Wiggler)	6.11 / 1.15	MeV
Damping Times (w.(wo) Wiggler)	15(80)/15(80)/8(20)	ms
Coupling	0.01	
Number of Damping Wigglers	20 -	
Number of Undulators	14	-

TABLE: Some Parameters of Petra III.

PETRA III OPTICS OVERVIEW

FIGURE: Horizontal and vertical beta functions in Petra III. The optics including all damping wigglers but without undulators is shown.

PETRA III OPTICS OVERVIEW

FIGURE: Horizontal dispersion in Petra III. $Dx_{max} = 83.4$ cm, $Dx_{rms} = 39$ cm

OUTLINE

2 Review of Wiggler Design and Parameters

3 Experience from Commissioning

4 CONCLUSIONS

WIGGLER SECTIONS

FIGURE: Wigglers in parking position.

- Regular FODO structure
- 10 wigglers per long straight section
- Total length of wigglers: 80m
- Total radiated power: 880 kW @ 200mA

WIGGLER MAGNETIC DESIGN (BINP)

- Peak Field: 1.58 T
- Magnetic Gap: 24 mm
- Period Length: 20 cm
- Pole Width: 8 cm
- SR critical energy 35.8 keV
- Wiggler SR power 42.1 kW @ 200mA

WIGGLER MAGNETIC DESIGN

FIGURE: Vertical magnetic field after peak field tuning. $\Delta B/B_{\text{max}} \approx 10^{-4}$

FIELD QUALITY

FIGURE: Magic fingers for wiggler tuning.

FIGURE: Correction of vertical and horizontal field integral.

- Streched wire mesurements of all wigglers. Accuracy: 5 Gcm (rms).
- Vertical and horizontal first field integral over the good field region.
- Measured at DESY after transport and reassembly. Reproducible within 30 Gcm after dis-/reassemling.
- Vertical/horizontal correction with 10/12 magnets, respectively.
- Constraints put on maximal variation of field integrals as well as on multipole coefficients extracted from fits to the data.

LER2010 11/27

FIELD QUALITY

FIGURE: Magic fingers for wiggler tuning.

FIGURE: Correction of vertical and horizontal field integral.

First Integral of Vertical Field 800 600 400 200 B [Gs cm] 0 -200 -400 -600 -800 -1000 -1200 -3 -2 -1 0 x [cm] 1 First Integral of Horizontal Field 1200 1000 800 600 B_x [Gsom] 400 200 -200 -400 -600 -2 x [cm] FIGURE: Streched wire measurements of first field integralsy

FIGURE: Streched wire measurements of first field integration Red lines mark the limits put on the variation in the good field region.

ALEXANDER KLING (MPY - DESY)

WIGGLER PERFORMANCE AT PETRA III

VACUUM SYSTEM AND ABSORBER DESIGN

FIGURE: Schematic layout of the vaccum system.

FIGURE: Wiggler vacuum chamber.

- NEG coated water cooled wiggler vacuum chamber.
- Pow. Dens. $\sim 1 \text{mW/mm}^2$, $P_{\text{tot}} < 100 \text{ W}$.
- Copper absorbers, iterated optimization of tapers in view of impedance budget.
- Smallest vertical aperture 9 mm (odd absorbers).
- Regular absorbers: < 26 kW each

VACUUM SYSTEM AND ABSORBER DESIGN

FIGURE: Schematic layout of the vaccum system.

FIGURE: Regular absorber.

- NEG coated water cooled wiggler vacuum chamber.
- Pow. Dens. $\sim 1 \text{mW/mm}^2$, P_{tot} < 100 W. ۰
- Copper absorbers, iterated optimization of tapers in view of impedance budget.
- Smallest vertical aperture 9 mm (odd) absorbers).
- Regular absorbers: < 26 kW each</p>

VACUUM SYSTEM AND ABSORBER DESIGN

FIGURE: Long absorbers 9 and 10.

FIGURE: New chamber in modified quadrupole QN9.

FIGURE: Final absorber.

- 2 long absorbers: 4.5 m
- 90 kW power deposition.
- Final absorber behind first dipole: 6 m
- 120 kW
- New chambers for dipole and modified quadrupole.

OUTLINE

2 Review of Wiggler Design and Parameters

3 EXPERIENCE FROM COMMISSIONING

4 CONCLUSIONS

EXPERIENCE FROM COMMISSIONING

INFLUENCE ON OPTICS

- Regular FODO structure.
- Wigglers described by matrix element in MadX.
- Matrix derived from tracking.
- Asymmetry due to absorbers at the end of section.

FIGURE: Measured beta and phase beating with 3+3 wigglers installed compared to the optics for the bare machine.

EXPERIENCE FROM COMMISSIONING

INFLUENCE ON OPTICS

- Regular FODO structure.
- Wigglers described by matrix element in MadX.
- Matrix derived from tracking.
- Asymmetry due to absorbers at the end of section.

FIGURE: Measured Beta and phase beating with 3+3 wigglers installed compared to the optics including wiggler matrix descriptions.

Matrix description works well!

DISPERSION CONTROL

- Careful combined orbit and dispersion correction necessary.
- Control of vertical dispersion using skew quads.

MEASURED EMITTANCE

Calculated horizontal width: $\sigma_x = 44 \ \mu m$, Calculated emittance: $\varepsilon_x = 0.9 \ \text{nm rad}$

- Estimated vertical emittance:
 ε_y < 20 pm rad
- Clear decrease in lifetime after dispersion tuning: 1.5 h @ 1.4 mA
- Expected Touschek lifetime: 2 h @ 2.5 mA

NONLINEAR DYNAMICS

- Injected beam size: 350 nm rad, 10% coupling.
- Required acceptance for injection:
 ~ 18 mm mrad (aiming at 30)
- Vertical: $\sim 1 \text{ mm mrad}$
- Detuning with amplitude: dominant cross term ∂Q_y/∂J_x
- MadX (pure sextupole): ~ -2400, SixTrack with wigglers: ~ -2100
- Momentum acceptance > 1.5% as required to Touschek lifetime.

NONLINEAR DYNAMICS

- Recent multiturn measurements with all Bpms (with R. Bartolini).
- Good agreement with tracking results
- Also confirms good control of linear optics.
- Investigation of coupling and nonlinear resonances ongoing.

NONLINEAR DYNAMICS

- Some more lines appear in the vertical spectrum.
- Machine model has still to be improved.
- Careful compensation of bpm nonlinearities required.
- Comparison with machine without wigglers?

ALEXANDER KLING (MPY - DESY)

EXPERIENCE FROM COMMISSIONING

TUNE SHIFT WITH INTENSITY

- Transverse kick parameter k_⊥ (V/pC/m)
- Budget 4800 for 2.5 mA
- Impedance model: 750 (horizontal)
- $\sigma_z = 12$ mm, RF-Voltage: ~ 15 MV
- $\Delta Q_x / \Delta I = -0.0017 \Rightarrow 860$

- Budget 4800 for 2.5 mA
- Impedance model: 2610 (vertical)
- $\Delta Q_y / \Delta I = -0.008 \Rightarrow 3950$
- 33% larger than model, still within budget.
- More than 2.5mA have been stored in single bunch!

EXPERIENCE FROM COMMISSIONING

TEMPERATURE MEASUREMENTS AT ABSORBERS

FIGURE: First measurements of power load on absorbers with 6+6 wigglers installed. Good agreement with theory (Mind however Abs. 7!). Measurements with all wigglers not yet evaluated.

OUTLINE

2 Review of Wiggler Design and Parameters

3 Experience from Commissioning

Parameter	Design	Achived
ε_x (nm rad)	1	1
ε_y (pm rad)	10	< 20
Current (mA)	100	89
Orbit Stability	10%	x o.k. / y almost
Single Bunch Current (mA)	2.5	2.5

TABLE: Achievements in commissioning of PETRA III since April 2009.

