

Beam based girder alignment at SLS

Andreas Streun, PSI

- Persons & References
- Concept Girder motion control
- GM/GME girder movers and girder mover encoders
- HLS Hydrostatic leveling system
- HPS Horizontal positioning system
- POMS position monitoring system
- Beam based girder alignment
- Costs Experience Status Conclusions
- Outlook Future prospects

Persons

PSI (* ex-PSI)

M. Rohrer, P. Wiegand*, S. Zelenika* K. Dreyer, H. Umbricht, F. Wei A. Jaggi, R. Kramert, V. Schlott S. Hunt* Å. Andersson^{*}, M. Böge, L. Rivkin, A. Streun

External

R. Ruland, SLAC, Menlo Park, USA Concept E. Meier, Ingenieurbüro Meier, Winterthur, Switzerland Hydrostatic Leveling System B. Fiechter, Eltromatic AG, Winterthur, Switzerland R. Sabjan, CosyLab, Ljubljana, Slovenia Control system

Mechanical Engineering Survey & Alignment Diagnostics Control system **Beam Dynamics**

Girder Mover Control

References

- S. Zelenika et al., The SLS storage ring support and alignment systems, NIM A 467-468 (2001) 99-102
- V. Schlott et al., *Dynamic Alignment at SLS,* EPAC-2000, Vienna, p.993
- A. Streun et al, Beam stability and dynamic alignment at SLS, SSILS'01, Shanghai, p.67
- A. Streun, Beam based girder alignment, 3rd International workshop on beam stability, Grindelwald, Dec.6-10, 2004 http://iwbs2004.web.psi.ch/
- P. Wiegand, SLS storage ring girder mover: test of the control system, Internal report SLS-TME-TA-2000-0145*
- A. Streun, Algorithms for the dynamic alignment of the SLS storage ring girders, Internal report SLS-TME-TA-2000-0152*
- P. Wiegand, SLS storage ring girder, vibration and modal analysis tests, Internal report SLS-TME-TA-2000-0153*
- A. Streun, 6-D girder positioning, Internal report, in preparation

*http://slsbd.psi.ch/pub/slsnotes/

Concept

1. Magnet mounted rigidly onto girders

Girder rail precision 15 μm , Magnet axis calibration 30 μm

2. Girders movable in 5 degrees of freedom
3. Position monitoring systems on girders

Hydrostatic Leveling System

4 pots per girder

- · redundancy
- . get v, χ , σ with error bars

Valves

- $. 1 \times ring$
- . $12 \times single sector$
- \cdot [48 \times girder]

Performance

- · resolution: $1 \, \mu m$
- range: 14 mm

Test results

Girder movement: Comparison to Survey and HLS/HPS data

K. Dreyer, S. Hunt, A. Streun, H. Umbricht, F. Wei, S. Zelenika

Set Movers of Girder	02G1	
Survey of Girder	02G1	(18 reference marks)
HLS/HPS readouts of girders	02G14	(sector 02 evaluation)

		Set	Survey	HPS/HLS	comment
<u>Single n</u>	notions:				
Sway	[µm]	+100	89 ± 9	100	02G <u>2</u> sway = 14 micron
Heave	[µm]	+100	93 ± 6	6	HLS too slow
Roll	[µrad]	+100	103 ± 24	100	
Yaw	[µrad]	+100	85 ± 7	80	surge 7 ± 6 instead of 35 expected
Pitch	[µrad]	+100	99 ± 6	99	surge 63 ± 6 instead of 81 expected
<u>Combin</u>	ed motio	<u>ı:</u>			
Sway	[µm]	+50	33 ± 9	35	+ HPS/HLS evaluation works
Heave	[µm]	+50	50 ± 6	30	– HLS very slow (τ > 15 min)
Roll	[µrad]	+50	89 ± 24	55	– Yaw too small
Yaw	[µrad]	+50	41 ± 7	31	– Coupling to adjacent girder ?
Pitch	[µrad]	+50	51 ± 6	49	

Andreas Streun, Dynamic Alignment at SLS, Low Emittance Rings Workshop, CERN, January 12-15, 2010

9.1.2002

1.35
0.50
1.30
0.15
0.20
0.05
3.55

Experience with the systems

POMS (BPM Position Monitoring System)

- useful to observe drifts and correlations, warm-up
- **×** sensors radiation sensitive \rightarrow local shielding \checkmark
- **HLS** (Hydrostatic Leveling System)
 - monitoring of long term settlements
 - too slow for interactive use
 - **X** technical problems (drifts, waves, biology, fluid mixing) \rightarrow \checkmark

HPS (Horizontal Positioning System)

- \bigstar depends on HLS \rightarrow no interactive use
- \Rightarrow "VPS" (Vertical Positioning System) is missing !
- **GM / GME**(Girder Movers / Encoders)
 - Complex system (240 motors...) / manpower intensive
 - Iow eigenfrequencies for coupled girder oscillations
 - ✓ potential of true "Girder–OCO", resp. BBGA
 - convenient girder realignment (software)

Status

The system is not used for dynamic alignment ...

not needed:

the magnetic orbit correction and feed-back perform excellent.

- risky: vacuum chamber stress (no bellows)
 - . potential damage.
 - . counterforce from chamber: resilience & irreversibility.
- incomplete :
 - . HLS far too slow for dynamic use.
 - . VPS (encoder based) is missing.
 - . HPS partially dismounted for super-bend installation.
- ... but the GM/GME system is used by alignment group in combination with survey(i.e. not using the sensors):
 - for correction of misalignments due to settlements,
 - on request, if misalignments have been derived from beam dynamics studies.

Conclusions

SLS dynamic alignment system was overdone

 ⇒ better: give up dynamic alignment capability in favor of stiffness of support (higher eigenfrequency): SOLEIL: 6-D manual alignment & Fixation clamps ✓

Concept approved

Clamped magnets & movable girders

Digital encoder systems approved

- very efficient (low cost: < 1kCHF/sensor)
- high precision (< 1 micron)
- fast response
- sufficient reliability (with radiation shielding)

Beam based girder alignment is feasible...

...but would require further studies.

Outlook

New girder realignment campaign 2010:

En route to the natural vertical emittance limit (0.55 pm)... Achieved so far: 2.8 pm at 1.3 mm rms vertical dispersion, limited by steps between girders:

→ Michael Böge: *Reaching ultra-low vertical emittance in the SLS*

Future prospects

Dynamic alignment for next generation rings ?

 ϵ < 1 nm light sources and damping rings

- high-strain non-linear dynamics (higher multipoles etc.), tighter tolerances to misalignment errors
- coupling suppression, vertical emittance < 1 pm
- reduced corrector strengths (granularity, non-linearity)

Magnet and girder trends:

traditional: individual magnet alignment to girder SLS: magnet clamped to movable girders MaxLab: several magnets from one iron block

Concept for a 6-D dynamic girder alignment system

- Full 6-D: include surge too (in use at SLS beam lines)
- Optimize supports with respect to SVD-weighting factors of the 6x6 linear system for girder positioning.
 ⇒ broad girder for roll control ideal hexpod girder →
- "Soft" vacuum chamber, e.g. MAX-IV: copper pipe, Ø 22 mm
- HPS & VPS: many digital encoders for overdetermined measurement:
 ⇒ position data error estimates.
 ⇒ system redundancy
 - \Rightarrow system redundancy.
- HLS only for absolute calibration of monuments.

