Fast kicker performance in ATF

T.Naito(KEK)

LER2010(2010/01/14)

Parameters of ILC

The length of the bunch train, which consists of 5640 bunches and 154ns bunch spacing, in the linac is $\sim 300 \mathrm{~km}$ long. The long bunch train should be compressed in the DR and should be decompressed at the downstream of the DR for the appropriate circumference size of the DR.

parameters

Bunch train
Bunch charge
Bunch spacing
Repetition rate
5640(2820) bunches
2nC/bunch

\qquad
10.1.14 Main Linac

Beam cycle of DR Bunch spacing

Beam Storage Sequence in DR

Injection

Kicker pulses for Beam extraction

ILC DR kicker parameters

Specification
Kick angle $\quad \theta \sim 0.6 \mathrm{mrad}$ or $\int B d l \sim 0.01 \mathrm{Tm} @ 5 \mathrm{GeV}, \beta \sim 50 \mathrm{~m}$
Stability $\quad 7 \times 10^{-4}$
Rep. Rate $\quad 6.5(3.25) \mathrm{MHz}, 1 \mathrm{~ms}$ burst, 5 Hz
Rise/fall time < 3.08 (6.15) ns
of the field

The existing kicker, which consists of a pulse magnet and a thyratron switch, is not be able to realize the parameters, especially, the rise/fall time and the repetition rate.

Design of Strip-line kicker system

$\Delta \theta=2 \mathrm{~g} \frac{\mathrm{eV}}{\mathrm{E}} \frac{L}{d}$
$L=$ strip - line length
$d=$ distance between the electrodes
$V=$ pulse voltage
$E=$ Beam energy
Trigger
Delay
$g=\tanh \left(\frac{\pi \omega}{2 \mathrm{~d}}\right)$
$\omega=$ strip - line width
$d=$ distance between the electrodes

Design of Strip-line electrode for ILC

The shape of the electrode is designed to keep good uniformity of the deflecting field. The calculated flatness is 0.07% in the area of +1.8 mm from the center.

Pulse power supply (FID FPG5-3000M)

FID(FPG-3000M) Waveform

FPG3000

Pulse width(FWHM) = 2ns
Pulse height $=5.8 \mathrm{kV}$
Rise time $=\sim 1.5 n s(5 \% \sim 95 \%)$
Time jitter $=\sim 29 p s$
Amplitude Jitter $=0.72 \%$
(limited by the scope resolution)

BEHLKE HTS-50-08-UF

Rise time $\sim 3 n s$ at 2.5 kV output

Burst pulses(1MHz, 500pulses) droop:5×10-3

Adder Drive Board(LLNL:Ed Cook)

This high voltage pulse power supply is basically developed for the drive pulse of the induction linac.
$+/-3.1 \mathrm{kV}, 500 \mathrm{kHz}, 500$ pulses, $\sim 4 \mathrm{~ns}$ rise time, 10 ns pulse width FET(D) ${ }^{12} 275$) on time: 2ns

Beam kick experiment in ATF-DR

A) Kick angle measurement by Single-shot BPM
B) Rise/fall time measurement by Turn-by-Turn BPM
C) Rise/fall time improvement by Waveform compensator

Strip-line electrode for ATF-DR experiment

Turn-Bv-Turn(TBT) BPM system

Beam oscillation during 4000 turn

Frequency spectrum

$$
y^{\prime} \propto F(f)
$$

This measurement can avoid the noise effect from the other frequencies. 12

Beam kick profile with 5kV FID pulsers and a 30cm long strip-line kicker

The beam kick test in the DR had been carried out by using a 30 cm stripline and a pair of 5kV FID pulsers. The picture shows the timing scan of the kick pulse to the beam, when the Positive and Negative pulses(5kV) are applied at the same timing. The peak kick angle is 0.44 mrad and the rise time of the kick field is $3 n s$, which agreed with the estimation from the kick voltage and the strip-line dimensions.

Timing scan of the kick pulse

When the negative and the positive kick pulse is applied to the electrodes at the same timing, the kick angle is same as the sum of the kick pulses. There is no affect for the the rise and fall time of the kick field.

Waveform compensator

GITF)

Experimental set up
The riselfall time can be improved by the combination of the positive and negative pulses which have different timings and different amplitudes.

Simulation of waveform compensator 10.1.14

Waveform simulation

The rise time simulation for the timing and the amplitude of the compensation pulse

Delay v.s. NegativePulseAmplitude

Delay v.s. PositivePulseAmplitude

Rise time improvement with Waveform compensator

10.1.14

Rise/fall time improvement v.s. timing

Experiment at ATF2

ATF2-40nm beam production, measurement
Extraction kicker

The beam extraction test of the strip-line kicker is being carried out by replacing the pulse magnet of the extraction kicker. The difficulty is that the kick angle of strip-line kicker is not enough compared to the kicR.arigle of the existing pulse magnet.

Present beam extraction (Pulse magnet kicker system)

Kick angle Stability

308ns pulse width

3 bunches, 154ns spacing

Timing chart of 30 bunches beam extraction

The bump orbit is gradually changed after all of the bunches have been damped. The strip-line kicker kicks out the beams at the timing of the flat-top of the bump orbit. The beams are extracted as one long bunch train, which is a 10 mic -sec long with 154 ns (or 308 ns) bunch spacing.

Injection beam

30 bunches with 154(or308)ns spacing

Present layout

20051221 T.Naito

Design Orbit

Orbit by using Strip-line Kicker \& bump

2.6mrad kick angle

Optics design of Orbit Bump with 7 Correctors

Auxiliary Septum location

Abs[dx] between septum and INJ.Kicker

Power Supply Control for the Pulse Bump

The pulse current control, which is synchronized with the beam injection, is required for the steering magnets of the local bump orbit to keep

Bump Orbit Test Result

Display Control Switches

10.1.14

22-FEB-2008 07:11:4 INTENSITY CUT | OFF 300.0 |
| :--- |
| CLIPPING MODUL | OVERFLOWO UNDERFLOW CHANGE SCALE

OTHER MENU
READER
CONTROL OPEN WINDOW
STANDARD DEVIATION
\qquad

| open window |
| :--- | :--- |
| canl controo |

Open winow
sicmax

PEN WINDOW DR CALIB
 DRBPM \# 25

$\begin{array}{lr}\mathrm{X} & 129.7 \\ \mathrm{Y} & 95.4\end{array}$
${ }^{2}$ The height of the bump is confirmed by the displacement at BM20 and the magnet currents. There is no BPM at the location of the peak of the bump. BPM20 is located at 1 m downstream of the peak of the bump. The calculation depicted about 2 mm of displacement at the BPM20. The picture shows the control window and the beam position of the damping ring. The black line in the horizontal beam position shows the displacement by the bump magnet from the COD. The measurement results show good agreement with the calculation and almost no leakage orbit at the other location. The dispersion correction is not enough at this condition. There was no beam blow up for the vertical emittance and no beam loss at this experiment.

Aperture

Horizontal aperture is limited by the strip-line electrode. 3o of the injection beam can get through a 12mm gap of the strip-line kicker section.

Proto type strip-line kicker(60cm long)

725

KEK fabricated a proto type 60 cm long strip-line kicker, which has 9 mm electrode gap. The input/output connectors are HN-type commercially available feeqothṛц!gh.

Photo of the fabricated strip-line kicker

10kV, 4ns pulser

Internal-pos(TEK00007)

To increase the kick angle, we used $4 n s$ pulse width pulsers, which is fabricated by FID. The waveform looks good. The flatness of the pulse train is defined from 7th pulse to 37th pulse.

Kick angle estimation of the $4 n s$ pulser

The kick angle of the single pulser is 0.9 mrad for 60cm long strip-line. Two pairs of the strip-line will make 3.6 mrad kick angle, which will be able to extract the beam without the auxiliary septum magnet.

Auxiliary septum magnet design and fabrication

10.1.14

The design work of the auxiliary septum magnet was carried out by using OPER 2D and 3D.
The designed auxiliary septum magnet has 1.6 mm of a thin separator and 0.1 T of bending field.

Auxiliary septum magnet

The current test up to 300A was done without any temperature problem. The leakage flux is less than 1%, which can be compensated by the auxiliary coil.

Feild Measurement of the Auxiliary Septum Magnet

EXT Orbit with Fast Kicker

S.Kuroda

Fast Kicker Strength: 1mrad X 2

Fast Kicker BSAUX

Orbit is measured from
DR design orbit

+ toward EXT
10.1.14

Correctors K0: ZH9R -0.002320433716
ZH100R 0.009876184722
ZH101R - 0.005210348744
Free parameters; K0 of BSAUX, BS1-3X
Imposed Condition;
Abs[dx]<3 mm in BS1-3X region
$d x=d p x=0$ at the end of BS3X
Results;
BSAUX K0=-. 010280163677
BS1X K0 =. 0011826626821
BS2X K0 =. 0031361169236
BS3X K0 =-. 0013134448462
BS1\&2X is weaker by $8.4 \%, \mathrm{BS} 3 \mathrm{X}$ is stronger by 1.1%.

Physical aperture in septum region must be larger than
$3 \mathrm{~mm}+$ orbit distortion(+beam size) ${ }^{33}$

Beam Extraction succeeded from DR to ATF2

 2009.Oct. 22.

Beam profile at MS1X screen monitor, which is located at the downstream of the septum magnets.

Multi-bunch beam extraction by the Fast kicker

The stored multi-bunch beam, which has short bunch spacing(5.6ns), in the Damping Ring is kicked out bunch-by-bunch with 308ns interval by the fast kicker. The picture shows the case of the 6 bunches beam extraction. In the picture, the blue line shows the bunch charge monitored by the current transformer at the location of the middle of the extraction line. The horizontal scale is $400 \mathrm{~ns} / \mathrm{div}$ and the vertical scale is $0.2 \mathrm{nC} /$ div.

Multi-bunch beam extraction by the Fast kicker(2)

Home: TDS 3054B naito-scp1 (20.10.66.109)

Up to 17 bunches of the multi-bunch beam was extracted to the extraction line. Unfortunately, the bunch population of the extracted beam was not so flat. The timing system had a trouble at that time, which was caused by the unstable beam storage in the DR. The timing system will be improved for the next beam test.

Kick field profile and Timing jitter

Timing Scan(MQM16FF)

The graph shows the measured horizontal beam position at the extraction line, when the kicker pulse timing was scanned with 200ps interval. The position displacement corresponds to the kick field difference. A cavity BPM(MQM16FF) at the ATF2 beam line was used for the measurement.
There is no flat-top for the kick field of the strip-line kicker. The estimated kick angle jitter is about $2 \times 10^{\wedge}-3$, when the designed R12 is used. We suspect the trigger timing jitter was caused by the kick angle jitter. One of four pulses had a large timing jitter($\sim 500 \mathrm{ps}$) compare to the others. We are trying to reduce the timing jitter.

Summary

The fast kicker development has been carried out in KEK. The multi-unit of the strip-line kicker system driven by fast pulsers is most promising candidate of the ILC kicker. The performance of the single unit was tested in ATF DR. The measured rise/fall time of the kick field was 3ns each, which depends on the shape of the kick pulse waveform. The waveform compensator was proposed and tested to improve the rise/fall time. The rise time improved from 3ns to 2.2 ns with the waveform compensator.
The beam extraction test has been done from the ATF-DR to the extraction line. The circulated bunches with 5.6 ns bunch spacing was kicked out bunch-by-bunch with 308ns bunch spacing. The beam extraction scheme is same as ILC kicker. Up to 17 bunches of the bunch train could be made at the extraction line. The measured stability of the kick angle was 2x10仝.ア.a4

