What Should be Understood about Top?

Robin D. Erbacher

University of California, Davis

Experimental Summary of **Top @ Tevatron 4 LHC** Workshop Held November 21, 2009 at UC Davis

Top @ Tevatron 4 LHC

Date: Location: Building: Nov. 20-21, 2009 University of California Davis Alumni Center, UC Davis

Abstract:

Abstract: As the LHC ramps up, the Tevatron will have high-precision data on the top quark with sensitivity to new physics at the TeV scale. With the LHC ramping up, this workshop will assess whether there are opportunities for toprelated physics at the Tevatron that have not been utilized. Main topics: toprelated new physics searches at the Tevatron; the possible anomaly in the top forward-backward asymmetry; and boosted top/jet substructure at the Tevatron. The workshop will have approximately equal number of theorists and experimentalists, and the format is informal with lots of time for discussion.

http://particle.physics.ucdavis.edu/workshops/doku.php?id=2009:topattevatron

Tevatron Questions

Tom Schwarz Top@Tevatron 4 LHC

Are we exhausting our phase space at the Tevatron?

The cold water...X-Section

t-tbar A_{fb}

t' Search

Spin Correlations

Resonance Search

Selection not optimal for high energy resonances?

Collision Energy Distribution (standard cuts)

Color Octet $M_x = 700 \text{ GeV}$

JOHNS HOPKINS

Boosted Top

Salvatore Rappoccio

Johns Hopkins University / CMS / CDF

 $M_{Z'} > 700 \, GeV/c^2$

Top@Tevatron4LHC

 $M_{Z'} > 700 \, GeV/c^2$

Top@Tevatron4LHC

New Idea: Top Jets

- Even moderate parent masses will result in collimated top "jets"
- Substructure can still be resolved
 - Subjets
- Two mass scales involved:
 - Top mass
 - W mass
 - Affects angular distribution of subjets
- For QCD, only gluon emission scales
 - Tend toward "zero" mass, smaller anglular separation

20 Nov 09

Top@Tevatro

New Idea: Top Jets

- How to get at substructure?
- Sequential combination algorithms produce "subjets" naturally in the course of the algorithm!
 - Exploit the clustering sequence

Look at sequential combination in more detail

Substructure Finding

Top-down

- "Peel off" layers of jet clustering sequence
- Throw away soft and colinear clusters

4 -> 3 -> 2 ->1

- arXiv:hep-ph/0201098
- arXiv:hep-ph/0702150
- arXiv:0806.0848∨2

Bottom-up

- Start from "ground up" of clustering sequence
- Throw away soft and colinear clusters
- 1 -> 2 -> 3 -> 4
- arXiv:0810.0934

Comparable results for both

20 Nov 09

Top@Tevatron4LHC

3

Boosted Top at the Tevatron

- Can we do this?
- Could be cutting off our tails
 - Delta R cuts on jets
 - Isolation on lepton
- If t' and A_{fb} are hinting at something, this might be a good direction

But what else?

Tom Schwarz *Top@Tevatron 4 LHC*

- Joey Huston (MSU)

p_T=270 GeV/c

- Joey Huston (MSU)

Do we understand backgrounds or are they just contained?

Why should we care?

- Today's signal is tomorrow's background $[H+2 \ jets \ t\bar{t}H]$
- tt+j is to the LHC what W + heavy flavor is to the Tevatron

The W+HF problem

Measurement of the $t\bar{t} + j$ Cross Section

A_{fb}/A_c and A vs M_{tt} in tt Pair Production

The CDF-II Collaboration

including

U Michigan: G. Strycker, M. Tecchio, D. Amidei UC Davis: T. Schwarz, R. Erbacher, J. Conway Universitat Karlsruhe: J. Wagner, T.Chwalek, W. Wagner

Reconstructed Top Rapidity

Speaker: Dan Amidei, U. Michigan

Subtract (somewhat asymmetric) Backgrounds

Process	>=4 jets		
W+HF Jets	-0.087±0.0052		
Mistags (W+LF)	-0.044±0.0079		
Non-W (QCD)	-0.017±0.036		
Single Top	-0.16±0.012		
WW/WZ/ZZ	0.1±0.032		
Z+Jets	-0.01±0.014		
Total Prediction	-0.059±0.0079		

-Q*Y (pp frame) with 3.2 fb^{-1}

Measurements

 $A_{FB} = 0.19 \pm 0.07 \pm 0.02$

 ΔY (tt frame) with 1.9 fb⁻¹

 $A_{FB} = 0.24 \pm 0.13 \pm 0.04$

D0 has measured

 ΔY (uncorrected) with 0.9 fb⁻¹

 $A_{FB} = 0.12 \pm 0.08 \pm 0.01$

compare CDF Δ Y uncorrected A_{FB} = 0.11 ± 0.04

The M_{tt} distribution: Bridgeman, Liss (CDF) (with Schwarz)

- A proper unfold to parton level
 - "no evidence of departure from SM"

Mass Dependence of the Asymmetry M. Tecchio, T. Schwarz

• unfold in M_{tt} and A_{fb}

for some mass cut

- reconstructed data divided into 4 exclusive bins
 - low mass FW
 - low mass BW
 - high mass FW
 - high mass BW
- backgrounds subtracted
- selection bias, reco slews corrected simultaneously in mass and Y with 2x2 unfold
- parton level A_{fb} for 2 mass bins "high and low"
- can study as function of cut

Data Measurement with Mass Cut at 450 GeV

Asymmetry in low vs high M_# for M_{tt}=450 GeV

Now Scan the Cut

- points: data
- dashed: Pythia reweighted with flat Acosθ asymmetry
 - A = 19%
 - no mass dependence
- green: "NLO model", Pythia reweighted with A_{FB} linearly dependent on M_{tt} as per fit to NLL calculation
- awaiting more data!

Now what?

• A_{FB} in pp frame

- Procedure for study of mass dependence
- it's all 2σ
- more studies
 - ΔY for full data set
 - understand systematics
 - $\ A_{FB} \ vs \ M_{tt}$
 - $\quad A_{FB} \ vs \ Y$
 - asymmetries of decay products
- more data!!

•While on the energy frontier, we look for interesting events on the tails of the top quark distributions

•Can a t' exist? Can it mimic top?

•Generic 4th chiral generation is consistent with EWK data; can accommodate a heavy Higgs (500 GeV) without any other new physics

- •Masses of 4th generation quarks ~ few hundreds of GeV
- •Oblique corrections drive Higgs Mass to ~ 500 GeV
- Almost degenerate b' and t' masses: M(t') M(b') < M(W)

•Two Higgs Doublets N=2 SUSY (C.He et al, hep-ph/ 0102144)

Total Transverse Energy (Scalar)

•While on the energy frontier, we look for interesting events on the tails of the top quark distributions

• Little Higgs models predict a heavy t' -like particle

• Several SUSY models provide for a 4th generation t' or mimic top-like signatures (Beautiful Mirrors: Choudhury, Tait, Wagner)

This Analysis ~2.8 fb⁻¹

Idea: use kinematics again to separate t' from t

- We search for new quark decays into Wq: t' -> Wq
 - t´ ->Wb´ is kinematically suppressed and $V_{t'b} \sim V_{t'q}$
- Use lepton+jets events (no b-tagging requirements)
- Assume BR(t'->Wq) ~ 100%
- Model new signal with 4-generation t' quark pair production (Pythia)
- Assume strong t' pair production with strong SM couplings

Reconstructed Mass

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

Search for massive top

•We use the top mass fitter, and fit observed 2D data distribution of H_T vs M_{recon}

Variables are ~modelindependent, to maintain sensitivity to many BSM scenarios

Data v. Projections

Couple of strange ones...

Significance Test nxn

• measure	
significance of	
excess by looking	at
upper-right-most n	X
n bins	

• let n increase from n=1,2,... and find the n x n region with most significant excess

• then ask "how probable is it that we get such a most significant excess?" CDF Run 2 (2.8 fb⁻¹) Preliminary

n	Min M_{rec}	Min H_T	observed	expected	p-value
	$[{ m GeV/c^2}]$	[GeV]			
1	475	775	0	0.021	1.000
2	450	750	0	0.116	1.000
3	425	725	1	0.228	0.2040
4	400	700	2	0.371	0.0540
5	375	675	3	0.718	0.0364
6	350	650	4	1.503	0.0660
7	325	625	4	2.876	0.3251
8	300	600	12	5.498	0.0110
9	275	575	14	9.885	0.1273
10	250	550	29	18.03	0.0105
11	225	525	41	31.34	0.0555
12	200	500	58	52.05	0.2219
13	175	475	92	91.14	0.4779
14	150	450	152	158.7	0.7141
15	125	425	222	231.0	0.7318

41

Other ideas: Top plus missing E_T

- Search for anomalous events that look like top+MET. \rightarrow SUSY cascades, T \rightarrow A_ht (L. Wang), ...
- Similar (based on) t' search but optimize for extra MET.
- Search underway at CDF.

Jorgen D'Hondt

First Top Quark convenor in CMS (2007 & 2008)

Testing Top Topologies (The T³ strategy)

This talk is a" food-for-discussion" presentation. Many of the items can be developed for the Tevatron and the LHC settings. First tests of the principle can be performed at the Tevatron...

How to characterize the top topology ?

- Minimize the set of "T³ variables"
- The kinematics of the events can be projected into few variables
- Develop a criteria to define the "best" minimal set of variables
- Add the "extra multiplicity" variables (eg. # extra jets, # btags, # extra lepton, ...)
- Add differences between decay channels...
- Add differences between top and anti-top (eg. CPT symmetry)
- Apply a basic event selection...

Early Tevatron reference "Search for Anomalous Kinematics in ttbar Dilepton Events at CDF II" - arXiv:hep-ex/0412042v2

Four phase strategy for searches

- Phase 1: Simple blind goodness-of-fit tests
- Phase 2: Rank the events (still general)
- Phase 3: Model-dependent goodness-of-fit tests
- Phase 4: Zoom in and check relevant distributions in interesting ranges

- Top Quark physics is the key topic for the Tevatron and will be the key physics topic for 2-10TeV LHC collisions
- An understanding on the full process, from production over properties to decays, has still to arise
- Goodness-of-fit techniques can be developed and tested at the Tevatron, in order to be applied with confidence at the LHC
- The "T³ strategy" involves lots of work from both the Tevatron and the LHC side

