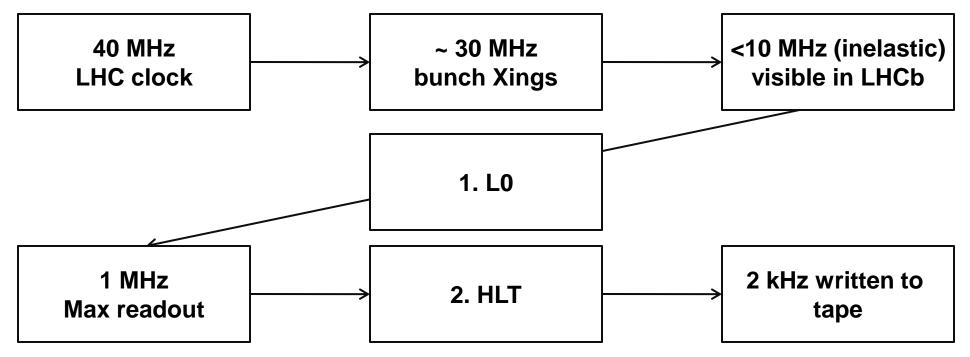
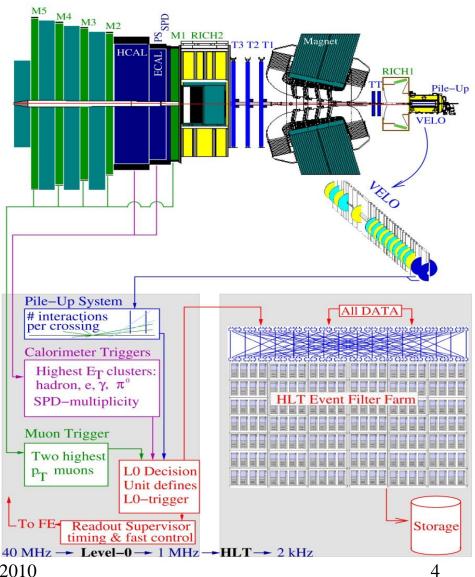

The LHCb trigger

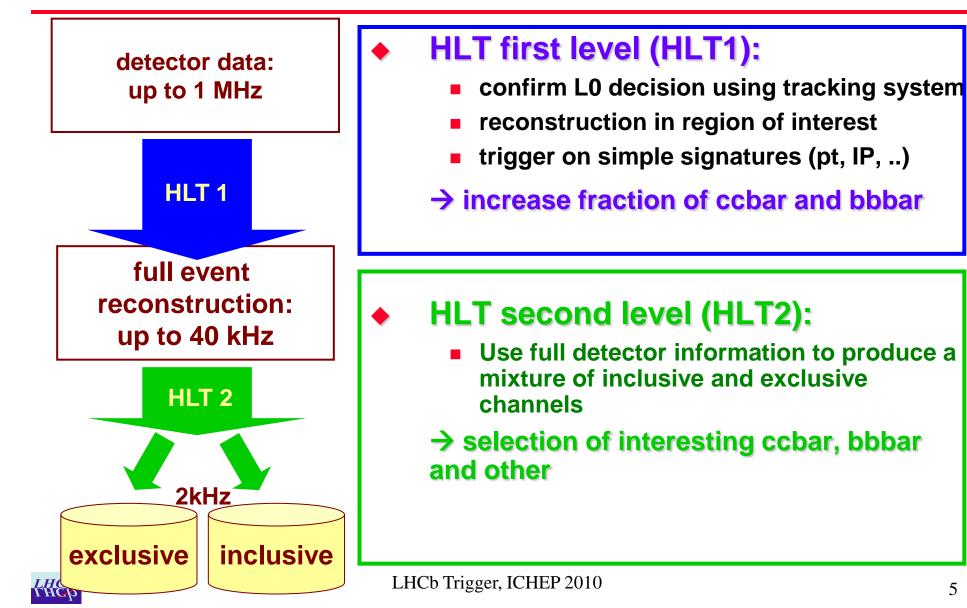
Eric van Herwijnen, on behalf of the LHCb collaboration Thursday, 22 july 2010

Aim of LHCb trigger


- Exploit finite lifetime & large mass of charm & beauty hadrons to distinguish heavy flavour from background in inelastic pp scattering
- Aim of trigger is to reject not interesting events as soon as possible
- Assume LHCb design luminosity 2*10³² cm⁻²s⁻¹

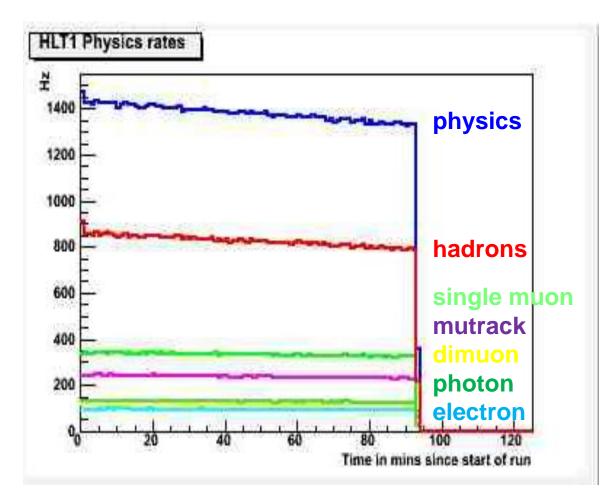
Structure of trigger


- 1. L0 is implemented in hardware. It reduces the visible (2 tracks in detector acceptance) interaction rate to a maximum of 1 MHz (nominal rate into LHCb)
- 2. HLT is a C++ application running on an Event Filter Farm composed of several thousand CPU nodes.


L0 trigger

- **Highest E_T** hadron \geq 3.5, E_T e, γ , $\pi^0 \geq$ 2.5 GeV clusters in **Calorimeters**
- **Highest** $p_{T}^{\mu, \mu\mu} \ge 1$ **GeV** muons, in Muon **Chambers**

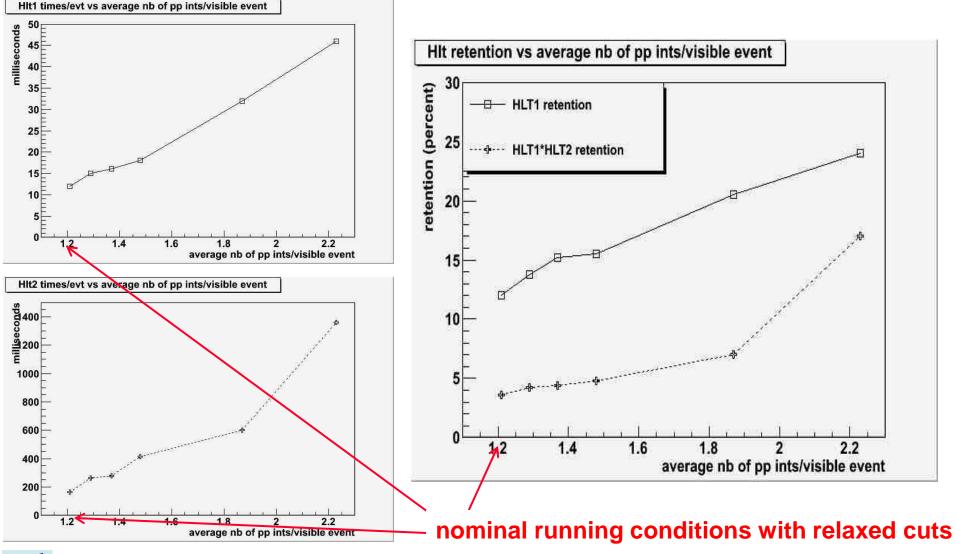
HLT Trigger


Commissioning

- L0 used cosmics to commission; running smoothly from day 1 last year
- HLT: prepare/test offline using MC and also new "unbiased" data
- Inject MC and real data into EFF to test new online versions of HLT
- Benchmarks:
 - Configuration time
 - Time per event
 - HLT1 & 2 rejection rates
- If all ok, put new version in production

Monitoring

HLT/L0 rate trend plots, e.g.



Experience with early data taking

- Running conditions: factor 100 lower than design luminosity
- Relaxed cuts for efficiency, maximizing charm while exploiting 2kHz output rate
- However, increased luminosity per bunch due to lower β^{*} (3.5 m instead of 10 m) means we have a higher average number of pp interactions per visible event (1.5 instead of 1.2, but we even saw 2.3)
- CPU increases dramatically

HLT1 & 2 times/evt and retention rates

Lнср гнср

LHCb Trigger, ICHEP 2010

Trigger performance

L0 Muon trigger efficiency to select J/ Ψ HLT efficiency in D^{*+} p_t events as a function of $p_{\rm T}$ of the muon coming from J/ Ψ **TOS efficiency** eff £0.9 LoMuon Efficiency O TIS is HIt1MB.* TISXTOS/ 1.1 □ TIS is HIt1 Physics 0.7 0.9 0.6 0.8 0.5 0.7 LHCb 0.4 **Preliminary** 0.6 • Data 0.3 $\sqrt{s} = 7 \text{ TeV}$ **LHCb** 0.5 **Preliminary** 0.2 0.4 √s=7 TeV 2 10 6 8 0.1 0 max μ pt(GeV/c) 0 25005000750000 0 LHCb Trigger, ICHEP 2010 $pT(D^{*})$ (MeV)

Conclusions

- The full trigger is operational in the experiment
- Efficiencies are as expected
- At low luminosity we are running with much relaxed thresholds, and quickly adapting to more challenging than nominal conditions
 - higher average # of pp ints/visible event

Trigger Configuration Key (TCK)

- Allows selecting and keeping track of trigger conditions of data
- A running HLT job can change to a new TCK (in the same family) on the fly ("fast run change")
- Can follow luminosity evolution, lower thresholds without reloading code in the Event Filter Farm

Operational constraints

• Storage:

- Nominal design conditions (ave pp ints/vis xing = 1.2)
- L0 accept rate: 1 MHz. Evt size: 35 kb. HLT accept rate: 2 kHz. Thru-put to storage: 70 MB/s.
- Now (13/7/2010) higher pileup makes events bigger:
- For 12b_8_8_8 bunches, L0 rate: 53 kHz, ave pp ints/vis xing 1.5. HLT rate 1.9 kHz, evt size 52 kb, thru-put to storage: 100 MB/s.
- Theoretical limit: 500 MB/s

• CPU:

- L0 rate 60 kHz: current (=1/5 of final) farm can handle 73 ms/evt. With current ave pp ints/vis xing (1.5, 50 kHz) : 45 msec/evt.
- CPU usage increases exponentially with higher pileup and L0 rate
- Complete (increase factor 5 in power) planned for november

