

OBSERVATORY

FRRF

Recent Results from the Pierre Auger Observatory

Karl-Heinz Kampert for the Pierre Auger Collaboration (University of Wuppertal, Department of Physics)

- - The Pierre Auger Observatory
 - Understanding the Instrument
 - UHECR Energy Spectrum (GZK-Effect)
 - Arrival Directions
 - **Composition** (hadrons, photons, neutrinos)
 - Outlook & Discussion

ICHEP, 22.-28.7. 2010, Paris

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen

Pierre Auger Observatory in Argentina

C

63

Pierre Auger Observatory in Argentina

3000 km² area on a plateau 1450 m a.s.l. 1660 Detector Stations + 27 FD Telescopes at periphery

A Telescope and a Water Cherenkov Station

...1660 Water Cherenkov tanks

27 fluorescence telescopes...

Hybrid: More than Sum of the Two

Surface Detecor Based:

- + High Statistics (24 hrs a day)
- + Simple geometrical exposure
- Calibration of Energy from EAS-simul.

Fluorescence Detecor Based:

- + High Resolution
- + Low energy threshold
- + Calibration by laboratory expt's
- about 15 % duty cycle
- complicated aperture

- + Well known calibration
- + Flat, well known aperture

FD is used to calibrate SD

+ Low energy threshold

ICHEP 2010, Paris

Understanding the Instrument

Very detailed MC studies performed as well as very many systematic checks making use the 2-fold detection technique

ICHEP 2010, Paris

Karl-Heinz Kampert, University Wuppertal

Ground Array calibrated by Fluorescence Obs.

ICHEP 2010, Paris

Karl-Heinz Kampert, University Wuppertal

Auger Energy Spectrum

Simple astrophys. models fit data surprisingly well
Constraining models needs composition measurement

Auger Energy Spectrum

Simple astrophys. models fit data surprisingly well
Constraining models needs composition measurement

Sky Plot at $E \ge 55$ EeV

First results reported in Science 318 (2007) 938

69 events observed (up to 31.12.2009; 20370 km² sr y) compared to position of nearby AGN (d<75 Mpc) from VC-V, exposure weighted

expect 14.5 directional correlations by chance, 29 observed

Evolution of Degree of Correlation

After publication in 11/2007, correlation degree dropped from 69_{-13}^{+11} % (9/13) to 38_{-6}^{+7} % (21/55)

0.3 % probability to find such a correlation from an isotropic distr.

Weaker Correlation near Galactic Plane

First results reported in Science 318 (2007) 938

when 10° around galactic plane is excluded, correlation fraction increases from 38 to (46±6)%, while 24% is expected by chance from isotropic distribution

Conflict with HiRes in the North ?

Applying Auger Scan-Parameters:

2 correlations observed out of a set of 13 events; 2.7 expected by chance, 4.9 expected for 38% signal strength

too low statistics to make any pos/neg claim

Moreover...

- very sensitive to energy threshold (and resolution!)
- different matter and magnetic field distribution N vs S
- different levels of completeness in VC-V N vs S

Cross Correlations with other Cat'gs

- ★ each CR arrival direction (E>55 EeV) forms a pair with each object in catalogue (d< 200 Mpc)</p>
- ★ plot fractional excess of pairs in data vs isotropic distribution
- \star \approx 1% of isotropic samples yield more pairs

Centaurus A appears interesting

central AGN core now also seen by HESS and FERMI-LAT

Cen A nearest AGN (FR-I); d~ 3.8 Mpc (→ GZK hardly visible)

Composition from X_{max} observations

Analysis of stereo data: $\sigma(X_{max}) = 20 \text{ g/cm}^2$

Heavy Composition favoured at high Energy

Strongly increasing X-Section ?

Karl-Heinz Kampert, University Wuppertal

Strongest Upper Limits on Photons

largely ruled out

GZK-Photons in reach

Very good γ-Hadron Discrimination by X_{max} Measurements

γ-induced showers less sensitive to EAS modelling

Karl-Heinz Kampert, University Wuppertal

EeV Neutrinos by Horizontal EAS

Only a neutrino can induce a young horizontal shower !

shower front

UHE Diffuse Neutrino Flux Limits

Auger Enhancements

High Elevation Telescopes (HEAT)

20 km² radio antenna field

Infill and Muon Detector (AMIGA)

Auger North in Colorado

Summary

- Auger collects data with an annual exposure of 7000 km² sr yr
- Largest statistics and highest quality ever
- Suppression of E-spectrum above GZK-Energy
- Arrival directions of events above GZK-threshold show correlation to nearby matter distribution
- Correlation has weakened, significance remains constant
- Trend to heavier composition above 10¹⁹ eV (but hadronic interactions may change, too; independent SD data...)
- Suffering from X_{max} statistics in GZK-energy range
- strongest photon and neutrino limits ~10¹⁸ eV almost rule out top down models
- Auger South is being extended to a multi-hybrid observatory allowing high quality measurements also below ankle
- Strong Auger-North R&D activity has begun