$J/\psi \rightarrow \mu^+ \mu^-$ Production in pp Collisions at 7 TeV in ATLAS

<u>Andrew Nelson</u> Iowa State University On behalf of the ATLAS Collaboration

ICHEP 2010, Paris

Introduction

- Tevatron previously obtained excellent agreement between data and Monte Carlo
 ¹⁰ BR(J/w→u⁺u) do(pīp→J/w+X
- ATLAS can probe J/ψ production mechanisms in a new energy regime, providing a test of several QCD predictions
- Present two related first measurements:
 - Differential cross section of J/ ψ vs. transverse momentum (p_T) and rapidity (y)
 - Ratio of non-prompt to prompt produced J/ψ :

- Non-prompt J/ ψ 's (produced in decay of long-lived
- Prompt J/ ψ 's (produced in QCD processes or in the decay of excited charmonium states)

Inner Detector and Muon Spectrometer

2.1m

- Inner Detector:
 - Solenoidal magnetic field of 2 Tesla
 - Track parameters measured from the ID are used to calculate J/ψ kinematic properties
 - Pixel ($|\eta| < 2.5$)
 - Resolution: $10/115\mu m$ in $R\phi/z$
 - Silicon Strip (SCT) ($|\eta| < 2.5$)
 - Resolution: $17/580\mu m$ in $R\phi/z$
 - Transition Radiation Tracker ($|\eta| < 2$)
 - Resolution: $130\mu m$ in $R\phi$
- Muon Spectrometer:
 - Average toroidal magnetic field of 0.5 Tesla
 - Only used to identify which inner detector tracks come from muons
- Trigger system:
 - Minimum Bias Trigger Scintillator (MBTS)

- L1 Muon Trigger 24 July 2010

A. Nelson | $J/\psi \rightarrow \mu + \mu$ - from 7 TeV Collision

Barrel toroid

Resistive-plate chambers (RPC)

End-cap toroid

Monitored drift tubes (MDT)

Barrel semiconductor tracker

detectors

Pixel

6.2m

Event Selection

• Trigger:

- For cross section analysis (L=9.5nb⁻¹), use the Minimum Bias Trigger Scintillators (MBTS)
- For the ratio measurement (L=17.5 nb⁻¹), the trigger efficiencies play no role, so the L1 muon trigger is included
- Vertex Requirements:
 - To veto cosmics, require ≥3 tracks from the same primary vertex
 - Tracks must pass quality cuts: ≥1 pixel hit, and ≥6 SCT hits
- Track Requirements:
 - Tracks must come from a muon
 - Tracks must pass the same quality cuts
- Opposite sign inner detector tracks are then fit to a common vertex 24 July 2010
 A. Nelson | J/ψ→μ+μ- from 7 TeV Collision

Differential Cross Section

- Measure the cross section of the J/ ψ in bins of transverse momentum (p_T) and rapidity (y)
- Event-by-event maximum likelihood fit of $m(J/\psi)$ is performed in each bin to determine the J/ψ yield
- To recover the number of produced $J/\psi \rightarrow \mu^+\mu^-$ decays, the acceptance, offline reconstruction, and trigger efficiency are needed
- Weight each event with the acceptance and efficiency

$$w^{-1} \equiv A(p_T, y, \lambda_i) \times \epsilon_{\mu}(\vec{p}_1) \times \epsilon_{\mu}(\vec{p}_2) \times \epsilon_{trig}(\vec{p}_1, \vec{p}_2)$$

- Reconstruction efficiencies are calculated from simulation
- Trigger efficiency is calculated from Minimum Bias triggered data

$J/\psi \rightarrow \mu^+ \mu^-$ Candidates Used in the Cross Section Analysis

• Di-muon mass distribution for selected $J/\psi \rightarrow \mu^+\mu^-$ candidates used in the cross section measurement

24 July 2010

24 July 2010

A. Nelson | $J/\psi \rightarrow \mu + \mu$ - from 7 TeV Collision

Differential Cross Section

- Differential J/ψ cross section vs. p_T and y
- Shape of of differential cross section agrees with Pythia Monte Carlo expectation
 - Significant absolute deviation

- Spin-alignment uncertainty the most significant systematic
- Other systematic sources:
 - Reconstruction and trigger efficiency uncertainty
 - Binning for acceptance and efficiency corrections

24 July 2010

Fraction of J/ ψ from b-Hadron Decays

• Distinguish between J/ψ 's from prompt production and those produced in bhadron decays by using the distance between the J/ψ decay vertex and the primary vertex

 L_{xy} =xy displacement of candidate from primary vertex projected on p_T

- Fit the mass and pseudo-proper time simultaneously in p_T bins from 1-15 GeV with an unbinned event-by-event maximum likelihood fit
 - Signal τ PDF: δ function plus exponential convolved with a Gaussian resolution function
 - Background τ PDF: δ function plus two exponentials convolved with a Gaussian resolution function (parameterization)

24 July 2010

Example of Proper time Fit to Data

Fraction of J/ψ from b-Hadron Decays

- Ratio of indirect to prompt J/ ψ production cross sections as a function of J/ ψ p_T
- Good agreement with MC expectation

• Systematic uncertainties determined by repeating fit under various assumptions

- Effect from using different background models
- Several detector resolution models were used for the fitting
- Higher order polynomials were used in the mass fit for the background

- Fit method varied: fit performed in three steps instead of simultaneously to test stability A. Nelson | $J/\psi \rightarrow \mu + \mu$ - from 7 TeV Collision

Summary

- Reported the first ATLAS measurement of the double differential cross section of $J/\psi \rightarrow \mu^+ \mu^-$ in proton-proton collisions at 7 TeV in bins of p_T and rapidity
- Shape of the double differential cross section agrees well with the Monte Carlo expectation
 - Normalization of Monte Carlo is significantly larger
- Ratio of non-promptly to promptly produced J/ ψ is also reported in bins of $p_{_{\rm T}}$
 - Compared against the Pythia Monte Carlo expectation: result is in good agreement across p_T bins

Bonus Slides

Acceptance

- Acceptance is the probability that the decay of a J/ψ with transverse momentum p_T and rapidity y happens in the fiducial volume of the detector
 - Momenta and pseudorapidity (η) of muons satisfy lpl>3.5 GeV l η l<2.5
- Depends strongly on J/psi spin alignment, which is not known, so this uncertainty is assigned as a systematic
 - Acceptance map is made using different spin alignment models

Example acceptance map with

$p_T(J/\psi)$ GeV	Mean p_T GeV	$\frac{d\sigma}{dp_T dy} \cdot \operatorname{Br}[J/\psi \to \mu^+ \mu^-] \text{ (nb/GeV)}$				
		$0.0 \le u \le 0.75$				
		Data	PYTHIA			
6 - 8	6.9	$7.3 \pm 3.2 \text{ (stat)} \stackrel{+7.7}{_{-0.5}} \text{ (syst)} \stackrel{+7.7}{_{-4.5}} \text{ (theory)}$	153 ± 3			
8 - 10	8.9	6.1 ± 1.1 (stat) $^{+0.6}_{-0.4}$ (syst) $^{+3.4}_{-2.7}$ (theory)	52 ± 2			
10 - 15	11.9	1.50 ± 0.29 (stat) $^{+0.16}_{-0.08}$ (syst) $^{+0.74}_{-0.64}$ (theory)	11.4 ± 0.6			
		$0.75 \le y < 1.50$				
		Data	PYTHIA			
4 - 6	4.9	$46.5 \pm 7.9 \text{ (stat)} {}^{+9.7}_{-9.6} \text{ (syst)} {}^{+37.8}_{-19.8} \text{ (theory)}$	519 ± 5			
6 – 8	6.9	$16.0 \pm 2.0 \text{ (stat)} {}^{+3.4}_{-0.9} \text{ (syst)} {}^{+7.1}_{-6.0} \text{ (theory)}$	143 ± 3			
8 - 10	8.9	2.79 ± 0.68 (stat) $^{+0.27}_{-0.16}$ (syst) $^{+1.45}_{-1.24}$ (theory)	46.5 ± 1.8			
10 - 15	11.9	1.17 ± 0.26 (stat) $^{+0.14}_{-0.05}$ (syst) $^{+0.51}_{-0.47}$ (theory)	9.7 ± 0.5			
		$1.50 \le y < 2.25$				
		Data	PYTHIA			
0-2	1.0	$99 \pm 29 \text{ (stat)} {}^{+121}_{-52} \text{ (syst)} {}^{+115}_{-41} \text{ (theory)}$	1242 ± 5			
2-4	3.0	$95 \pm 20 \text{ (stat)} {}^{+35}_{-36} \text{ (syst)} {}^{+277}_{-40} \text{ (theory)}$	1546 ± 6			
4 - 6	4.9	38.2 ± 5.4 (stat) $^{+8.5}_{-6.7}$ (syst) $^{+50.2}_{-13.1}$ (theory)	469 ± 4			
6 - 8	6.9	$14.2 \pm 1.8 \text{ (stat)} {}^{+2.0}_{-1.0} \text{ (syst)} {}^{+9.0}_{-4.3} \text{ (theory)}$	129 ± 3			
8 - 10	8.9	4.3 ± 0.9 (stat) $^{+0.48}_{-0.18}$ (syst) $^{+2.2}_{-1.55}$ (theory)	41.3 ± 1.7			
10 - 15	11.9	0.74 ± 0.22 (stat) $^{+0.09}_{-0.03}$ (syst) $^{+0.38}_{-0.31}$ (theory)	9.6 ± 0.6			

 Differential cross section for inclusive
 J/ψ production as a function of p_T and y

Cross Section Systematics

p_T , GeV	$\langle p_T \rangle$, GeV	Value	Stat. error	Accept.	Reco.eff.	Trigger.eff	Tag-tag	Interpol.	Total syst.
$0.0 \le y < 0.75$									
6 - 8	6.9	3.6	1.6	+0.14	+0.42	+0.09	+3.84	+0	+3.9
				-0.15	-0.24	-0.09	0	-0.07	-0.5
8 - 10	8.9	3.08	0.66	+0.08	+0.39	+0.02	+0	+0	+0.40
0 10	0.7	5.00	0.00	-0.08	-0.16	-0.02	-0.12	-0.02	-0.22
10 15	11.0	0.75	0.19	+0.03	+0.11	+0.01	+0	+0	+0.11
10 - 15	11.9	0.75	0.18	-0.02	-0.04	-0.01	-0.01	-0.01	-0.05
$0.75 \le y < 1.5$									
4 - 6	4.9	23.2	4.0	+0.55	+25	+4.5	+0.08	+0	+5.2
6 - 8	6.9	8.0	1.0	+0.14	+1.1	+0.4	+1.4	+0.6	+1.9
				-0.15	-0.4	-0.4	0	0	-0.6
9 10	0.0	1.40	0.34	+0.02	+0.18	+0.02	+0	+0	+0.18
8 - 10	0.9	1.40	0.54	-0.02	-0.05	-0.02	-0.06	-0.03	-0.09
			0.12	+0.01	+0.05	+0.01	+0	+0	+0.06
10 - 15	11.9	0.58	0.13	-0.01	-0.03	-0.01	-0.01	-0.01	-0.04
				1.50 ≤	y < 2.25				
0-2	1.0	49	20	+1.3	+12	+21	+56	+0	+61
					0		0	14	20
2 - 4	3.0	48	10	+0.8	+5	+17	+0	+0	+18
2 1	5.0	40	10	-0.8	-3	-17	-3	-5	-18
	1.0	10.1	27	+0.4	+4.0	+3.1	+0	+0	+5.1
4-6	4.9	19.1	2.7	-0.4	-1.6	-3.1	-0.4	-0.1	-3.5
				. 0.10	. 1. 21	.0.20	.001	.0.25	.1.22
6 – 8	6.9	7.10	0.88	+0.10	-0.41	+0.39	+0.01	+0.35	-0.57
8 - 10	8.9	2.14	0.43	+0.03	+0.32	+0.07	+0	+0.01	+0.33
				-0.05	-0.07	-0.07	-0.01	0	-0.10
10 - 15	11.9	0.37	0.11	+0.01	+0.06	+0.01	+0	+0	+0.06
10 - 15	11.9	0.57	0.11	-0.01	-0.02	-0.01	-0.01	-0.01	-0.03

Monte Carlo Predictions

- There is a significant deviation between the Monte Carlo expectation (using the ATLAS MC09 tuning) of differential cross section and what we see in data
- Heavy flavor production depends on a number of parameters in Pythia
- The ATLAS MC09 tuning is one of the higher Monte Carlo predictions
- For the mean value of y ~1.9, the differential cross section of $p_T \overline{dp_T}$
 - ATLAS Data: 250⁺¹³⁰ nb
 - Pythia: 3450 nb
 - Color Singlet Model: 100-800 nb
 - Color Evaporation Model: 140-400 nb
 - Gluon Tower Model: ~300 nb

Pseudo-Proper Time Fitting

- Maximize the quantity, $\ln L = \sum \ln F(\tau, \delta_{\tau}, m_{\mu\mu}, \delta_m)$
- Pseudo-proper time and mass are fit with a simultaneous unbinned eventby-event maximum likelihood fit in the mass range 2-4 GeV, where the PDF is:

$$F \equiv F_{sig}(\tau, \delta_{\tau}) f_{sig}(m_{\mu\mu}, \delta m_{\mu\mu}) + F_{bkg}(\tau, \delta_{\tau}) f_{bkg}(m_{\mu\mu}, \delta m_{\mu\mu})$$
Pseudo-proper Mass PDF for Pseudo-proper Mass PDF for time PDF for signal signal candidates background

- Pseudo-proper time PDF for signal candidatesis an exponential plus a delta function convolved with a Gaussian resolution function
- Mass PDF for signal is a Gaussian
- Pseudo-proper time PDF for background is an exponential plus a double sided exponential plus a delta function convolved with a Gaussian
- Mass PDF for background is linear function 24 July 2010 A. Nelson | $J/\psi \rightarrow \mu + \mu$ - from 7 TeV Collision:

Pseudo-Proper Time PDFs

• Signal J/ ψ candidate pseudo-proper time PDF is

 $\mathcal{F}_{\mathrm{sig}}(\tau,\delta_{\tau})=f_B\mathcal{F}_B(\tau,\delta_{\tau})+(1-f_B)\mathcal{F}_P(\tau,\delta_{\tau}).$

- Where the nonprompt and prompt components are, respectively $\mathcal{F}_B(\tau, \delta_\tau) = R(\tau' - \tau, \delta_\tau) \otimes E(\tau').$ $\mathcal{F}_P(\tau, \delta_\tau) = R(\tau' - \tau, \delta_\tau) \otimes \delta(\tau') = R(\tau, \delta_\tau).$
- Where R connotes the signal resolution function
- Background nseudo-nroner time PDF is

$$\mathcal{F}_{\rm bkg}(\tau,\delta_{\tau}) = R_{\rm bkg}(\tau,\delta_{\tau}) + \exp\left(\frac{-\tau'}{\tau_{\rm eff1}}\right) \otimes R_{\rm bkg}(\tau'-\tau,\delta_{\tau}) + \exp\left(\frac{-|\tau'|}{\tau_{\rm eff2}}\right) \otimes R_{\rm bkg}(\tau'-\tau,\delta_{\tau})$$

• R_{bkg} connotes the background resolution function

24 July 2010

Pseudo-Proper time Fit to Data

Fraction Results

$p_T(J/\psi)$ GeV	$\mathcal{R} \equiv \sigma(pp \to b\bar{b}X \to J/\psi X')/\sigma$	χ^2/DoF	p-value	
	Data	MC		
1 - 4	$0.22 \pm 0.09(stat) \pm 0.07(syst)$	0.061 ± 0.022	33.5/34	0.49
4 - 6	$0.12 \pm 0.05(stat) \pm 0.06(syst)$	0.137 ± 0.039	23.2/25	0.57
6 – 8	$0.24 \pm 0.05(stat) \pm 0.05(syst)$	0.238 ± 0.070	22.0/20	0.34
8 - 10	$0.25 \pm 0.08(stat) \pm 0.07(syst)$	0.365 ± 0.126	10.1/15	0.81
10 - 15	$0.60\pm0.15(stat)\pm0.10(syst)$	0.469 ± 0.180	6.9/16	0.97

- Ratio of indirect to direct J/ ψ production cross sections as a function of J/ ψ p_T