Run 152409 Event 4349994

p_T=49 GeV 6 b-tagging quality tracks in the jet, including one muon

Performance of Track and Vertex Reconstruction and *b*-Tagging Studies with ATLAS

Johanna Fleckner, *CERN / University of Mainz* on behalf of the ATLAS Collaboration

- Pixel detector:
 - ▶ 80M channels
 - $\sigma(R\Phi) = I0 \ \mu m \\ \sigma(z) = II5 \ \mu m$
- Semi Conductor Tracker (SCT):
 - ► 6,3M channels
 - $\sigma(R\Phi) = 17 \ \mu m \\ \sigma(z) = 580 \ \mu m$
- Transition Radiation Tracker (TRT):
 - 350.000 channels
 - $\sigma(R\Phi) = 130 \,\mu$ m (barrel)

Estimating Track Momentum Resolution

- using known particle properties
- mass distribution sensitive to
 - p_T resolution (mass peak width)
 - p_T scale (mass peak position)
- K_{S}^{0} mass spectrum parameterization: $f(m) = t + a \cdot m + b \cdot m^{2} + N \cdot e^{-\frac{(x_{m}-m)^{2}}{s^{2}}}$
- more information on reconstruction of known particle decays in ATALS by R. di Nardo (poster)

@ 900 GeV

5

rescale $K_{S}^{0} p_{T}$ in Mc	onte Carlo to fit
$\frac{1}{p_T^{MC}} = \frac{1}{p_T^{MC}} (1+\delta)$	μ : shift of mean σ : broadening of width

with
$$P(\delta;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp[-\frac{(\mu-1-\delta)^2}{2\sigma^2}]$$

$$u_{Barrel} = 1.0004 \pm 0.0002 \text{ (stat)}$$

$$\sigma_{Barrel} = 0.0040 \pm 0.0015 \text{ (stat)}$$

good agreement between data and nominal Monte Carlo for low momentum

 studies ongoing for resonances with higher mass (and p_T)

6

iterative finding Algorithm

 progressive down-weighting of outlying tracks

resolution determination: split vertex method

- split tracks in vertex randomly in two
- fit both vertices independently
- separation gives intrinsic resolution
- vertex resolution in data for n_{tracks} ≈ 50: (typical number in dijet events)
 - along x-axis: 40 μ m
 - along z-axis: 60 μ m

Tracking, Vertexing and b-Tagging with ATLAS

Most b-tagging algorithms rely on the measurable life time and displaced decay vertex of b-hadrons

Transverse Impact Parameter

- need well measured tracks
- study the transverse track

sketch of b-decay

primary

vertex

b-iet

b-decay

ICHEP 22 July 2010

Transverse Impact Parameter Resolution

- d₀ is the d₀^{track} resolution
 convolved with primary
 vertex resolution
- d_0 resolution in bins of p_T and θ : fit core of distribution with Gaussian
- resolution clearly depends on \mathbf{p}_{T} and θ
- for fixed theta:

$$\sigma(d_0) = \sqrt{E^2 + \frac{G^2}{p_T} + \frac{b^2}{p_T^2 \sin\theta}}$$

The Jet Probability Tagger (JetProb)

- probability for the jet to be compatible with the light jet hypothesis
- d_0 significance signed wrt jet axis (S_{d0})
- resolution function calculated in data for S_{d0} :

- 1. track probability: for each track calculate probability to come from primary vertex using resolution Function R
- 2. jet probability:

combine probabilities from all tracks in jet to a jet probability

- b-hadron decay vertex
- decay length significance is discriminating variable

vertex

decay length

INES GUTENBERG

- cut on positive decay length significance L/ σ (L)
 - \blacktriangleright clear enhancement of heavy flavour in the mass of the secondary vertex m_{vtx}

reasonable agreement between data and Monte Carlo

- exploits semi-leptonic decay of *b* and *c*-hadrons to muons: $BR(b \rightarrow \mu vX) + BR(b \rightarrow c \rightarrow \mu vX) \approx 20\%$
- associates good reconstructed muons to jets
 - tag weights from likelihood ratio based on p_T distribution wrt jet axis
 - to be used for calibration of the lifetime tagging algorithms

Run 152409

Event 4349994

4.6

JGU MANNES GUTENBER UNIVERSITÄT M

ICHEP 22 July 2010

tagger weights:

15

- ► Jet Prob: 10⁻⁹
- ► SV0 L/ σ (L): 24
- soft muon weight:

- Presented track and vertex performance and first
 b-tagging studies in ATLAS
 - reconstruction of known decays K_s^0
 - determine transverse momentum resolution and scale at low p_T
 - primary vertex reconstruction
 - transverse impact parameter resolution
 - unfolded from primary vertex uncertainty
 - three b-tagging algorithms used for early data analyses
 - good agreement with Monte Carlo prediction
- Inner Detector performs very well in first data
 - solid foundation for ATLAS tracking and b-tagging

backup slides

- reconstruction requirements:
 - vertex-fit: $chi^2 < 15$
 - I pixel hit, 6 SCT hits
 - ▶ d₀<50 mm, z₀<500 mm
 - transverse flight distance to PV > 0.2 (4) mm
 - cosine of angle in transverse plane between K momentum and K flight direction > 0.99 (0.999)
 - K flight direction > 0.99 (0.999) • relative pT scale: $1 - \frac{p_T^{MC}}{p_T^{reco}}$

and resolution: $p_T \times \sigma(1/p_T)$

- CONF notes:
 - ATLAS-CONF-2010-009
 - ATLAS-CONF-2010-033

NNES GUTENBERG UNIVERSITÄT MAI

Johanna Fleckner Tracking, Vertexing and b-Tagging with ATLAS

- estimating scale factors to compensate incorrect error description
 - $\sigma_{x_{\rm PV},\rm true} = K_x \sigma_{x_{\rm PV},\rm fit},$

- pull for split vertices:
- ATLAS-CONF-2010-069

$$\text{pull}_{x} = \frac{(x_{1,\text{PV}} - x_{2,\text{PV}})}{\sqrt{\sigma_{x_{1,\text{PV}},\text{fit}}^{2} + \sigma_{x_{2,\text{PV}},\text{fit}}^{2}}}.$$

d₀ can be unfolded in an iterative way

$$I \text{ st iter:} \quad d_0 \rightarrow d_0 \left[1 + \frac{\sigma_{d_0, PV}^2}{\sigma_{d_0, trk}^2} \right]^{-1/2} \qquad \text{ith iter:} \quad d_0^{(i)} \equiv d_0^{(i-1)} \left[1 + \frac{K_{PV}^2}{K_{trk}^2} \frac{\sigma_{d_0, PV, fit}^2}{\sigma_{d_0, trk, fit}^2} \right]^{-1/2}$$

- d₀^{track} resolution in central barrel at 15 GeV:
 - convolved: $24 \,\mu$ m
 - unfolded: $18 \,\mu$ m
 - MC truth: 15 μ m

- track requirements:
 - Pt > I GeV
 - ▶ nHitsSi >= 7
 - nHitsPix >= 2
 - nHitsBlayer >= 1
 - ▶ |d₀| < Imm
 - ► $|z_0 * sin(\Theta)| < 1.5 mm$

- tracking note:
 - ATLAS-CONF-2010-070
- b-Tagging notes:
 - ATLAS-CONF-2010-041
 - ATLAS-CONF-2010-042

sign for the transverse impact parameter wrt jet axis:

$$\operatorname{sign}(d_0) = \operatorname{sign}\left[(\vec{P}_j \times \vec{P}_t) \cdot \left(\vec{P}_t \times (\vec{X}_{pv} - \vec{X}_t) \right) \right]$$

The Track Counting Tagger

- d₀ significance signed wrt jet axis (S_{d0}) sensitive to b-hadron lifetime
- orders tracks in the jet according to their S_{d0}
- uses the 2nd highest S_{d0} as discriminating variable to identify *b*-jets

fairly good agreement between data and simulation

ICHEP 22 July 2010

- selection cuts:
 - Δ (R_{match})<0.5
 - ▶ |d₀|>4mm
 - ▶ p_T>4GeV
 - Comb'Muons: chi2/ndf < 10
 LowPt: chi2/ndf: cut at 5 σ
 - https://twiki.cern.ch/twiki/ bin/view/Atlas/
 FlavourTaggingPublicResults
 CollisionData

- likelihood ratio used to identify *b*-jets
 - taken from simulation