Commissioning and Performance of the ATLAS Calorimeter System with Proton Collisions at the LHC

Pascal Pralavorio (pralavor@cppm.in2p3.fr)

CPPM/IN2P3–Univ. de la Méditerranée (Marseille, FRANCE)

On Behalf of the ATLAS Collaboration

2000

ICHEP 2010, Paris, July 2010

2010

The ATLAS calorimeter system (1)

Composed of non compensating calorimeters

The ATLAS calorimeter system (2)

□ Sampling EM calorimeter

- Absorber : lead with accordion shape
- Active material : liquid argon (90 K)
- Readout : large electrodes (2 m²)

Sampling hadronic calorimeters

- Mix of technologies to cover $|\eta| < 5$
 - ✓ Steel + Tile scintillators → Tile
 - ✓ Copper + LAr → HEC
 - ✓ Copper/Tungstate + LAr → FCal

Hermetic in ϕ , very granular (173k cells) → Good e(γ) resolution, e/jet separation Hermetic (>10 λ) up to |η|<5 → Good jet and Etmiss resolution

Readiness before LHC collisions

□ Commissioning started ~10 years ago on calo modules

28 publications !

Calorimeter operation (1)

□ System completely installed 2 years ½ ago

- Monitor temperature in LAr cryostats (ΔT~60 mK)
- Cell response check with a dedicated calibration system
 - → Regular update of pedestal and gain

• F_{EM} mainly adjusted with electron test beam

Constantly control energy response in every 187k cells

Gain 🤸

From predicted ionization pulse + noise

EM BARREL and ENDCAP (HIGH Gain)

200 300 400

500

600 700 Time (ns)

0 100

 $E^{cell} \sim F_{EM} \times G$

(%)

∂G/G 0.2

0.3

Pedestal

RMS=0.084%

0 100020003000

Nb of FEBs

Calorimeter operation (2)

□ Hardware status for physics analysis

Regular control of cell behaviour (online Data Quality)

• Understanding/treatment of sporadically noisy cells still to be optimised

Commissioning with LHC collisions (1)

Look at energy distribution in all calorimeter cells after LHC turn on !

Focus on EM and first FCal module where most of the energy is deposited

Fair agreement data Monte-Carlo in the calorimeter system

Commissioning with LHC collisions (2)

Spot and correct for HV cable swap

Using first millions of minimum bias events

Fraction of events with $E_{cell} > 5 \sigma_{noise}$

Only 0.4% of EM calo cells with unexpected behaviour (now corrected) !

Commissioning with LHC collisions (3)

□ Timing of calorimeter cells

- Preparation before LHC collisions using the calibration, cosmic muons
- Current status with collision data

Performance with LHC collisions (1)

□ First level Calorimeter trigger

see Talk by J. Baines

HAD

Turn-on curve in fair agreement with Monte Carlo

Performance with LHC collisions (2)

\Box Extract prompt electron/ γ samples using EM calorimeter granularity

Electron vs hadrons

Good data-MC agreement for ATLAS EM calorimeter identification variables

Performance with LHC collisions (3)

□ Taste of EM calorimeter uniformity with first million of $\pi^0 \rightarrow \gamma \gamma$

First check of energy scale over η (~ 2%) and EM calo response uniformity in ϕ (< 0.7%)

Performance with LHC collisions (4)

Energy calibration for jet and Etmiss

- Define 3D cluster : ~ particle level, suppress noise
- Separate EM-like (e, γ , π^0) and HAD-like (π^+ , n) with cluster moment
 - Apply weights (W) according to cluster energy density
- Correct for out of cone (OOC) and inner detector/cryostats material (DM)

Weight for 3D clusters entering jets (p_T >2.3)

∧ 1. d IJ 3.5 $\langle E_{calib}^{W+OOC+DM/}E_{em-scale}$ ATLAS Preliminary **AS** Preliminarv З Data 2010 √s=7 TeV 0.0 < n < 0.6 Data 2010 (Vs = 7 TeV) MC QCD di-jets Non-diffractive Minimum Bias MC 2.5 0.8 $p^{LCW+JES} > 20 \text{ GeV}$ 0.6 1.5 0.4 Data/WC 1.1 20.1 20.1 20.0 20.0 0.2 1.2 MC/DATA 1 0.8 ±5% ±5% 0.855 2 З 4 5 n 10 p [GeV] $\eta_{_{cluster}}$

Agreement data-MC in ± 5% over the ~ full calorimeter coverage ($|\eta|$ <4.5)!

E/p with single hadrons ($|\eta|$ <2.3)

Performance with LHC collisions (5)

□ Missing transverse energy (E_T^{miss})

- Central for new physics search at LHC (SUSY, W', ...)
- Mainly based on calorimeter (calibrated 3D cluster cell energy)

ATLAS calorimeter provides reliable and stable measurement of E_T^{miss}

 $\mathbf{E}_{\mathbf{T}}^{\text{miss}} = -\Sigma \mathbf{E}_{\mathbf{T}}$ (calo)

Conclusions

□ The ATLAS calorimeter designed for optimal e, jet, E_T^{miss} measurement

- High granularity (~190 k cells), depth (>10 λ) and coverage ($|\eta|<5$)
- Well prepared with test beams and continuous *in situ* training (regular calibration, cosmic, ...)
- → Currently operational at ~98.5 % and stable with time

Commissioning and Performance with first LHC data

- Only 0.4% of unexpected problematic cells (corrected). Timing of front-end electronics at 2 ns
- With 1^{rst} million π^0 : EM calorimeter ϕ non uniformity~0.7%, and energy scale ~2%
- Calibration understanding and Data-Monte Carlo agreement at <10% over $|\eta|<5$

□ Measure calorimeter linearity, uniformity, scale with pure high mass resonances

	Jpsi→ee	W→ev	Z→ee	tt→WbWb→evbjjb
If 1fb ⁻¹ end 2011 (x10 ³)	8000	3000	300	10
S/B	>5	>20	>20	>10

ATLAS calorimeter system performing very well with first LHC data

Outlooks

□ Reconstructed (transverse) mass of Z (W) with ~ all available LHC statistics

• Here, MC normalised to number of entries in data after electron selection

The ATLAS detector

Cosmic muon results

Commissioning continues *in situ* with cosmic muons

3 publications

■ Small deposited signal → Very good check of the detector performance

LAr Signal shape

EM Calorimeter : signal reconstruction

Quality of signal reconstruction (SR)

- A_{max} accuracy (k) depends on the precision of electrical cell modelling
- Check quality on high energetic cells (E>5 GeV) : σ_{noise} negligible

Signal reconstruction under control on the whole calorimeter coverage

LAr Temperature and purity

LAr Temperature

- LAr signal sensitivity 2%/K (density: -0.45%/K , Velocity: -1.55%/K) → Require 100mK stability and homogeneity
- Using 150-200 PT100 probes in each cryostats immersed in liquid argon
- Homogeneity 59mK, with 1.5mK RMS for each probe over 10 days

LAr Purity

- Electronegative impurities would reduce the measured signal → Require purity <1000ppb</p>
- 30 purity monitors in the three cryostats
- Measured impurity: Barrel ~ 200ppb, EndCap ~ 140ppb

Well within required 0.2% uncertainties of signal

EM Calorimeter linearrity

□ From test beam results

