

The Search for New Physics at HERA

Gerhard Brandt (DESY) On behalf of the H1 and ZEUS Collaborations

July 22-28, 2010

HERA Collider and Experiments

A General Search for New Phenomena at HERA H1 Collaboration, DESY-08-173, Phys.Lett.B674:257-268,2009

Search for contact interactions in ep collisions with the ZEUS experiment at HERA ZEUS Collaboration, ZEUS-prel-09-013

Search for Excited Quarks in ep Collisions at HERA H1 Collaboration, DESY-09-040, Phys.Lett.B678:335-343,2009

Search for Single Top Quark Production at HERA H1 Collaboration, DESY-09-050, Phys.Lett.B678:450-458,2009

Search for Squarks in R-Parity Violating Supersymmetry with the H1 Experiment at HERA H1 Collaboration, H1prelim-10-063

Search for Lepton Flavour Violation at HERA H1 Collaboration, H1prelim-10-061

Search for Contact Interactions at HERA H1 Collaboration, H1prelim-10-062 Searches using ...

- Inclusive Measurement
- Exclusive Final States

Deep-Inelastic Scattering at high Q²

ICHEP'10

m_w

10⁴

¹⁰⁴ Q²(GeV²)

 Q^2 [GeV²]

G. Brandt - Searches at HERA

Search for Contact Interactions

 Consider vector currents as additional term to SM Lagrangian

$$\mathcal{L}_V = \sum_{q} \sum_{a, b=L, R} \eta^q_{ab} (\bar{e}_a \gamma_\mu e_a) (\bar{q}_b \gamma^\mu q_b)$$

General Compositeness

• Models defined by coefficients ϵ_{ab} =±1,0

$$\eta^q_{ab} = \epsilon_{ab} \, \frac{4\pi}{\Lambda^2}$$

• Limits on effective mass scale Λ : Λ > 3.7 – 8.9 [TeV]

Quark Radius

- Formfactor f_{a} modifies cross section
- Assuming point-like leptons ($f_e=0$)

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} (1 - \frac{1}{6}R_q^2Q^2)$$

• R_q<0.63 – 0.65 [10⁻¹⁸ m]

Large Extra Dimensions

• ADD model: 4+n dimensions leads to effective CI with scale M_s

$$\eta_G = \frac{\lambda}{M_S^4}$$

General Search

6

Search for Lepton Flavor Violation

F = 2

Search for Production of Lepton Flavor Violating Leptoquarks in 0.41 fb⁻¹

Excluded at ge S_{o,L} (e⁻u, vd) S_{o.R} (e⁻u) --- Ŝ_{o.R} (e⁻d) $eq \rightarrow \mu q$ ____ S_{1.L} (e⁻d, e⁻u, vd) 200 300 400 M_{io} [GeV] For λ =0.3 (em. strength) M₁₀>304-530 GeV

For scalar LQ B=0.5 Tevatron

limit M₁₀>259 GeV

Isolated Leptons in Events with Missing P

- Select isolated $p_T > 10$ GeV electrons or muons in events with $P_T^{miss} > 12$ GeV
- Good overall agreement with Standard Model (W-Production)
- Interesting events at high hadronic $P_{\tau}^{X} > 25$ GeV observed in e⁺p by H1

Anomalous Single Top Production

G. Brandt - Searches at HERA

Search for Excited Fermions

(Tevatron q* limits not

- Search for direct production of excited fermions evidence for compositeness
- Use effective Lagrangian to describe excitation/deexcitation

Search for Squark Production at HERA

 $R_P = (-1)^{3B + L + 2S}$

SUSY: R_P = -1

SM: $R_{P} = 1$

Resonant production of single squarks in *ep*-collisions possible with *R*-Parity **Violating** Superpotential

$$W_R = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

L: LH (s)leptons, Q: LH (s)quarks, D: RH down-type (s)quarks *i,j,k* generation indices (27 couplings)

- Many decay modes possible (direct, cascade)
- All relevant 17 final states investigated
- Selections optimized to minimize expected limit
- Some examples for rec. inv. mass spectra:

All investigated topologies in good agreement with SM exp.! \rightarrow Set limits on *R*pV SUSY models

Constraints on MSSM and mSUGRA

Scan of accessible MSSM parameter space

Summary

- Searches for deviations from the SM in e[±]p data performed by H1 and ZEUS based on the full HERA dataset (~0.5 fb-1 per experiment)
- Good description of NC DIS at high Q² allows to constrain many CI models inclusively and estimate a quark radius Rq < 0.63*10⁻¹⁸ m
- Most accessible final states investigated by the experiments
 - General Search and many optimised searches
 - Intriguing events observed, but overall no significant deviation from SM prediction
- Many models excluded up to (and beyond for CI-like interactions) center-of-mass energy:
 - Anomalous single top production
 - Excited Fermions
 - Lepton-flavor violating Leptoquarks
 - Squarks in RPV SUSY

• Excellent understanding of *ep* physics at \sqrt{s} =320 GeV

• HERA limits remain competitive in regions not accessible at LEP, Tevatron (and not *yet* at LHC)

backup

Event Displays: LFV Candidates

H1 Candidate Event in the Search for Second Generation Leptoquarks

 $ep \rightarrow \mu X$

 $ep \to \tau X$

H1 Candidate Event in the Search for Third Generation Leptoquarks

G. Brandt - Searches at HERA

ICHEP

Search for 2nd generation Leptoquarks

Search for 3rd generation Leptoquarks

ICHEP'10

Search for Squarks in RPV SUSY with H1 (Preliminary)					
	$e^+p~(255~{ m pb}^{-1})$		e^-p (183 pb ⁻¹)		Signal
Channel	Data	SM Expectation	Data	SM Expectation	Efficiency
eq	2946	2899 ± 302	3121	3215 ± 336	30 - 40%
νq	-	-	2858	2983 ± 358	50-60%
eMJ (RC)	140	145.6 ± 21.3	147	157.7 ± 23.8	10-40%
eMJ (WC)	1	0.58 ± 0.36	0	1.3 ± 0.3	5-20%
$\nu M J$	19	23.4 ± 5.8	24	28.9 ± 7.2	5-15%
eeMJ	2	1.7 ± 0.5	0	1.5 ± 0.5	5-35%
$e\mu MJ$	0	0.03 ± 0.03	0	0.03 ± 0.02	5-15%
u e M J	5	8.2 ± 2.0	3	5.6 ± 1.2	5-40%
$ u \mu M J $	0	0.06 ± 0.03	0	0.04 ± 0.02	5-20%

Mass Distributions (e⁻p, 183 pb⁻¹)

G. Brandt - Searches at HERA

zino dominated neutralino

 $\mu, \tan\beta, M_2$ determine REWSB

G. Brandt - Searches at HERA

SUSY RPV Parameter Scan

 $ilde{u}_L, ilde{c}_L$

mSUGRA - Down-type Squarks

assuming a coupling strength: $\lambda'_{11k}=0.3$ the indicated region can be excluded at 95% CL

mSUGRA - Up-type Squarks

assuming a coupling strength: $\lambda'_{1j1}=0.3$ the indicated region can be excluded at 95% CL

Strong mixing between stop (sbottom) states at higher tan β leads to dependence for third generation squarks.