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The dynamical approach

Idea: at low-enough Q2 only “valence” partons would be “resolved”

−→ structure at higher Q2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

Q2
0<1GeV2 optimally determined

a>0 “valence-like”

“STANDARD”:

Q2
0 = 2GeV2 arbitrarily fixed

Unrestricted parameters

xf (x,Q2
0) = N xa(1− x)b(1+A

√
x+Bx)

Positive definite input distributions

QCD predictions for x.10−2

More restrictive, less uncertainties

Arbitrary fine tunning (g <0!)

Extrapolations to unmeasured region

Less restrictive, marginally smaller χ2

Physical aid for determining CC for DGLAP 6= NP structure of the nucleon
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Brief history of the dynamical distributions

Dynamical assumption [Altarelli, Cabibbo, Maiani, Petronzio 74], [Parisi, Petronzio 76], [Novikov 76], [Glück, Reya 77]

in connexion with the constituent quark model: only valence quarks

First dynamical determination of parton distributions [Glück, Reya 77]

Used in the 80’s: e.g. for the discovery
of W and Z bosons (SPS, CERN)

Extended to include light sea [Glück, Reya, Vogt 90]

and gluon [Glück, Reya, Vogt 92] valence-like input
−→ steep gluon and sea at small-x!!

Confirmed by first HERA F2(x,Q2) data
[H1, ZEUS 93]

GRV95 and GRV98 contributed greatly
in the 90’s and beginning of the 00’s
New improved generation (GJR08, JR09):
MS + DIS factorization schemes, NNLO, error analysis, FFNS+VFNS, new data
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Dynamical vs standard distributions: gluon
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Uncertainties decrease as Q2 increase: pQCD evolution

Valence-like input, i.e., larger “evolution distance”⇒ less uncertainties
Q2

0 also play another role⇒ standard gluons fall below dynamical

Smaller effect for the sea: rather flat dynamical input
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Global NNLO analysis

Only DIS (1178) and DY (390) data included at NNLO for consistency

Drell-Yan data instrumental in fixing non-singlet distributions (uv,dv, d̄− ū)

Excellent agreement with data:

dynamical: χ2
DIS=0.90

“standard”: χ2
DIS=0.87

(fine tunning marginal)

NNLO effects small (few %):
χ2

NNLO'0.9χ2
NLO

with (not much) reduced errors  0.3
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Other effects (QED, factorization schemes, . . . ) comparable
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Determination of αs(M2
Z)

Consistent determination together with the distributions

General agreement but DIS-dominated fits usually yield smaller values

dynamical “standard”

NNLO 0.1124±0.0020 0.1158±0.0035

NLO 0.1145±0.0018 0.1178±0.0021

LO 0.1263±0.0015 0.1339±0.0030

Dynamical constraints reduce the uncertainty! (in particular at NNLO)

Dynamical results are smaller: larger “evolution distance” (Q2
0<1GeV2)

Other groups are either close to the dynamical or to the “standard” results
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The perturbative stability of FL
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Observed [M(R)ST(W)] instabilities unphysical: artefact of negative gluons

Both dynamical and standard results manifestly positive at all orders

Dynamical predictions stable already at Q2&2 GeV2

Standard differ more but less distinguishable due to the larger error bands
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Confronting results with data
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Preliminary data:
[Lobodzinska 2004]
[Lastovicka 2004]

New data compatible

Positive and in complete agreement with measurements

Dynamical predictions more tightly constrained

Higher-twist effects may contribute for Q2≤2 GeV2
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Heavy-quark contributions: FFNS
HQ generated in hard collisions: not collinearlly, short “lifetime” (6= parton)

Experiment: No intrinsic heavy-quark (c,b, t) content in the nucleon

FFNS ≡ FOPT initiated by gluons and light (u,d,s) quarks

−→ final state ≡ extrinsic heavy-quark content

HQ contributions to DIS:

Fh
k=2,L(x,Q

2,m2) =
Q2αs(µ

2)

4π2m2

∫ Q2

Q2+4m2

x

dz
z

{
e2

h c(0)k,g(η ,ξ )g
( x

z ,µ
2)

+4παs(µ
2)
[
e2

h

(
c(1)k,g(η ,ξ )+ c̄(1)k,g(η ,ξ ) ln µ2

m2

)
g
( x

z ,µ
2) +

∑
q

(
e2

h

(
c(1)k,q(η ,ξ )+ c̄(1)k,q(η ,ξ ) ln µ2

m2

)
q
( x

z ,µ
2) +e2

q

(
d(1)k,q (η ,ξ )+ d̄(1)k,q (η ,ξ ) ln µ2

m2

)
q
( x

z ,µ
2))]} ,

ln µ2

m2 are not (mass) divergences: FFNS gets trough all “stability tests”!!

Only drawback: calculational difficulty
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Effective heavy-quark PDFs: VFNS
Idea: Resum (RGE) the ln µ2

m2 to gain calculational power

Asymptotically (Q2� m2):

H(Q2

µ2 ,
µ2

m2 )−→ A( µ2

m2 )⊗C(Q2

µ2 )

A’s=massive OME’s, process independent!!
C’s=light-parton coefficient functions

Light-parton PDFs A’s−→ effective HQ-PDFs
assumed to be correct asymptotically
Ressumation of final-state contributions

(6= intrinsic heavy-quark content)

In practice: massless evolution increasing nf

at unphysical “thresholds” µ2'm2 (not ŝ&4m2)
Input determined always in the FFNS!!

(most data in threshold region)
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VFNS HQ-PDFs generated from FFNS preserving universality
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FFNS vs VFNS: Examples
VFNS reliable for large invariant mass of the produced system: W2�m2

−→ non-relativistic (βh . 0.9) threshold effects supressed

Example: Higgs produced in bb̄ fusion: Wth
mb

= 2mb+mH
mb

' MH
mb
� 1

FFNS: gg→ bb̄H

b

h
0

b

VFNS: bb̄→ H h
0

b

b

Uncertainties from choices of factorization scheme typically important!

Example: W± production at LHC:

σ
NLO =

{
186.5±4.9pdf

+4.8
−5.5 |scale nb (VFNS)

192.7±4.7pdf
+3.8
−4.8 |scale nb (FFNS)

VFNS sufficiently reliable for LHC and Tevatron energies.
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Weak gauge boson production rates
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NNLO typically larger but stable; scale uncertainty greatly (%4) reduced
Results from different groups within experimental uncertainty at Tevatron
NNLO expectations for LHC (≈ 5% accuracy):

σW = 190.2±5.6pdf
+1.6
−1.2|scale nb, σZ = 55.7±1.5pdf

+0.6
−0.3|scalenb

MSTW08 and ABKM09 some 5–10% higher at LHC
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Higgs boson production
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NNLO rather (20%) larger than NLO but total uncertainty bands overlap

Not very dependent on PDFs. Similar (within 10%) to other groups

Total accuracy at NNLO of about 10% at LHC

Tevatron: Similar features although uncertainty almost doubles
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Conclusions

New generation of dynamical parton distributions available up to NNLO

Dynamical approach: more predictive and smaller uncertainties

Consistent determination of αs(M2
Z) together with the distributions

Positive distributions and cross-sections (FL) in agreement with all data

FFNS reliable: no need for “resummation” (heavy-quark distributions)

Effective (VFNS) “heavy” quark distributions reliable for Tevatron and LHC

Total accuracy at LHC: ≈ 5% for gauge-boson production rates
≈ 10% for Higgs production

(Dis)agreement with ABKM09 and MSTW08 at the level of 10% at LHC
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