Dynamical parton distributions and Weak Gauge and Higgs Boson Production at Hadron Colliders at NNLO of QCD

Pedro Jimenez-Delgado

(with E. Reya)

ICHEP 2010

Dynamical parton distributions and Weak Gauge and Higgs Boson Production at Hadron Colliders at NNLO of QCD

The dynamical approach

Global NNLO analysis and the determination of $\alpha_s(M_Z^2)$

The longitudinal structure function

The treatment of heavy quarks

Weak-gauge and Higgs boson production at hadron colliders

The dynamical approach

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \rightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

DYNAMICAL:

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally **determined** $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily **fixed** $\mathbf{a} > 0$ "valence-like"

"STANDARD":

Unrestricted parameters

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

Arbitrary fine tunning (g < 0!)**Positive definite** input distributions OCD predictions for $x \le 10^{-2}$ **Extrapolations** to unmeasured region Less restrictive, *marginally* smaller χ^2 More restrictive. less uncertainties

Physical aid for determining CC for DGLAP \neq NP structure of the nucleon

Brief history of the dynamical distributions

Dynamical assumption [Altarelli, Cabibbo, Maiani, Petronzio 74], [Parisi, Petronzio 76], [Novikov 76], [Glück, Reya 77] in connexion with the *constituent quark model*: only valence quarks

First dynamical determination of parton distributions [Glück, Reya 77]

Used in the 80's: e.g. for the discovery of W and Z bosons (SPS, CERN)

Extended to include light sea [Glück, Reya, Vogt 90] and gluon [Glück, Reya, Vogt 92] valence-like input \rightarrow steep gluon and sea at small-x!!

Confirmed by first HERA $F_2(x, Q^2)$ data [H1, ZEUS 93]

GRV95 and GRV98 contributed greatly in the 90's and beginning of the 00's

New improved generation (GJR08, JR09): $\int_{x}^{y_{0}-t} \int_{x}^{y_{0}-t} \int_{x}$

Dynamical vs standard distributions: gluon

Uncertainties decrease as Q^2 increase: pQCD evolution

Valence-like input, i.e., *larger "evolution* distance" \Rightarrow **less uncertainties** Q_0^2 also play another role \Rightarrow standard gluons fall below dynamical Smaller effect for the sea: rather flat dynamical input

University of Zurich

Global NNLO analysis

Only DIS (1178) and DY (390) data included at NNLO for consistency Drell-Yan data instrumental in fixing non-singlet distributions $(u_v, d_v, \bar{d} - \bar{u})$

Excellent agreement with data: **dynamical:** $\chi^2_{\text{DIS}} = 0.90$ **"standard":** $\chi^2_{\text{DIS}} = 0.87$ (fine tunning marginal)

NNLO effects small (few %): $\chi^2_{NNLO} \simeq 0.9 \chi^2_{NLO}$ with (not much) reduced errors

1.6 1.5 1.4 1.3 1.2 1.1 $^{2}_{2}{}^{p}(x,Q^{2})$ $8.5 = Q^2 (GeV^2)$ 0.9 0.80.73.5 0.6 0.5 0.40.3 10^{-4} 10^{-3} 0.01 0.1

Other effects (QED, factorization schemes, ...) comparable

University of Zurich

Determination of $\alpha_s(M_Z^2)$

Consistent determination together with the distributions

General agreement but DIS-dominated fits usually yield smaller values

	dynamical	"standard"
NNLO	0.1124 ± 0.0020	0.1158 ± 0.0035
NLO	0.1145 ± 0.0018	0.1178 ± 0.0021
LO	0.1263 ± 0.0015	0.1339 ± 0.0030

Dynamical constraints reduce the uncertainty! (in particular at NNLO) Dynamical results are smaller: larger "evolution distance" ($Q_0^2 < 1 \text{ GeV}^2$) Other groups are either close to the dynamical or to the "standard" results

The perturbative stability of F_L

Observed [M(R)ST(W)] instabilities *unphysical*: **artefact** of negative gluons Both dynamical *and* standard results manifestly **positive** at all orders **Dynamical** predictions **stable** already at $Q^2 \gtrsim 2$ GeV²

Standard differ more but less distinguishable due to the larger error bands

Positive and in complete **agreement** with measurements Dynamical predictions more tightly constrained Higher-twist effects may contribute for $Q^2 \le 2 \text{ GeV}^2$ University of Zurich 35th International Conference on High-Energy Physics

Heavy-quark contributions: FFNS

HQ generated in hard collisions: not collinearly, short "lifetime" (\neq parton) **Experiment: No intrinsic heavy-quark** (c, b, t) content in the nucleon **FFNS** \equiv **FOPT** initiated by gluons and light (u, d, s) quarks

 \longrightarrow final state \equiv extrinsic heavy-quark content

 $\ln \frac{\mu^2}{m^2}$ are not (mass) divergences: FFNS gets trough *all* "stability tests"!! Only drawback: calculational difficulty

University of Zurich

Effective heavy-quark PDFs: VFNS

Idea: Resum (RGE) the $\ln \frac{\mu^2}{m^2}$ *to gain calculational power*

Asymptotically $(Q^2 \gg m^2)$: $H(\frac{Q^2}{\mu^2}, \frac{\mu^2}{m^2}) \longrightarrow A(\frac{\mu^2}{m^2}) \otimes C(\frac{Q^2}{\mu^2})$ *A*'s=massive OME's, process independent!! *C*'s=light-parton coefficient functions Light-parton PDFs $\xrightarrow{A's}$ effective HQ-PDFs assumed to be correct asymptotically Ressumation of final-state contributions $(\neq \text{ intrinsic heavy-quark content})$

In practice: massless evolution increasing n_f at unphysical "thresholds" $\mu^2 \simeq m^2$ (not $\hat{s} \gtrsim 4m^2$) **Input determined always in the FFNS!!** (most data in threshold region)

VFNS HQ-PDFs generated from FFNS preserving universality

FFNS vs VFNS: Examples

VFNS reliable for large invariant mass of the produced system: $W^2 \gg m^2$ \longrightarrow non-relativistic ($\beta_h \lesssim 0.9$) threshold effects supressed

Uncertainties from choices of factorization scheme typically **important**! Example: W^{\pm} production at *LHC*:

$$\sigma^{\text{NLO}} = \begin{cases} 186.5 \pm 4.9_{\text{pdf}} \stackrel{+4.8}{_{-5.5}}|_{\text{scale }} \text{nb} & (\text{VFNS}) \\ 192.7 \pm 4.7_{\text{pdf}} \stackrel{+3.8}{_{-4.8}}|_{\text{scale }} \text{nb} & (\text{FFNS}) \end{cases}$$

VFNS sufficiently reliable for LHC and Tevatron energies.

🕦 University of Zurich

Weak gauge boson production rates

NNLO typically larger but stable; scale uncertainty greatly (%4) reduced Results from different groups within experimental uncertainty at Tevatron NNLO expectations for LHC ($\approx 5\%$ accuracy):

 $\sigma^W = 190.2 \pm 5.6_{\text{pdf}} \, {}^{+1.6}_{-1.2}|_{\text{scale nb}}$ nb, $\sigma^Z = 55.7 \pm 1.5_{\text{pdf}} \, {}^{+0.6}_{-0.3}|_{\text{scale nb}}$

MSTW08 and ABKM09 some 5–10% higher at LHC

University of Zurich

Higgs boson production

NNLO rather (20%) larger than NLO but *total* uncertainty bands overlap Not *very* dependent on PDFs. Similar (within 10%) to other groups Total **accuracy at NNLO of about 10% at LHC**

Tevatron: Similar features although uncertainty almost doubles University of Zurich 35th International Conference on High-Energy Physics

Conclusions

New generation of dynamical parton distributions available up to NNLO Dynamical approach: more predictive and smaller uncertainties Consistent determination of $\alpha_s(M_7^2)$ together with the distributions **Positive** distributions and cross-sections (F_L) in agreement with all data FFNS reliable: no need for "resummation" (heavy-quark distributions) Effective (VFNS) "heavy" quark distributions reliable for Tevatron and LHC Total accuracy at LHC: $\approx 5\%$ for gauge-boson production rates $\approx 10\%$ for Higgs production

(Dis)agreement with ABKM09 and MSTW08 at the level of 10% at LHC

