GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects

Martin Pohl DPNC Center for Astroparticle Physics (CAP Genève) Université de Genève Switzerland

July 24, 2010

Page 1

ESS 2000 (Y. Asaoka et al.

HEAT-pba

O. Adriani et al., arXiv:1007.0821 (2010)

1

Renewed Interest in Galactic CR

₫/b

10

10

10

10

10-1

- Antiproton spectrum compatible with secondary production
- Positron and (e^++e^-) spectra show unusual shape
- HEAT (2001), AMS-01 (2002), ATIC (2008), Pamela (2009), Fermi-LAT (2009), H.E.S.S. (2010)
- Astrophysical or DM source?

Martin Pohl

FACULTÉ DES SCIENCES

AMS-02 with Superconducting Magnet TRD

AMS in CERN SPS Test Beam, Feb 4-8, 2010

Page 4

AMS in the Maxwell EMI chamber at ESTEC

Martin Pohl

FACULTÉ DES SCIENCES

AMS in the ESA TVT Chamber

200

Amplitude (ADC)

50

٥

100

150

Stabilization of the He Vessel

Stability criteria: dT/dt < 0.0001K/h

Expected life time of the AMS Cryostat on ISS: 20±4 months with M87 cryocoolers (1999) 28±6 months with GT cryocoolers (2010)

April 14th, 2009

Written by Nancy Atkinson

Life of the ISS May be Extended

ISS Lifetime Extension

Fifteen partnering nations have agreed in principle to extend the life of the International <u>Space</u> Station, and keep it operating through 2020, according to an article in the Wall Street Journal. That is at least five years beyond the current deadline. Until now, the major partners – NASA, ESA and the Russian Space Agency – hadn't committed to keeping the station operational past 2015, and questions loomed about the future of the ISS and its worthiness as a platform for scientific research. An extension could give new momentum to science, but may force NASA to siphon money away from other projects – like the new Constellation program – in order to pay for the additional years of operation.

• The ISS lifetime has been extended from 2015 to 2020 (or even 2028).

• The Shuttle program will be definitely terminated, thus eliminating any possibility of returning and refilling AMS.

• A superconducting magnet was ideal for a three year stay on ISS as originally planned for AMS.

• With the extended ISS life, the superconducting magnet is no longer the optimum choice.

• AMS-02 with the permanent magnet from AMS-01 will have 10-18 years time to collect data, providing much more sensitivity to search for new

DEPARTEMONCIA CLEARE ET CORPUSCULAIRE

AMS-02 with Permanent Magnet TRD

AMS-01 Permanent Magnet in Aachen Germany, April/May 2010

Transition Radiation Detector (TRD)

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Page 12

FACULTÉ DES SCIENCES

Ring Imaging Cherenkov (RICH)

10,880 photosensors

Page 14

Silicon Tracker: Rigidity and Charge

AMS-02 Permanent Magnet Silicon Tracker Layers

Layer 9 comes from moving the ladders at the edge of the acceptance from layer 1. Layer 8 is moved on top of the TRD to become 1N.

Martin Pohl

FACULTÉ DES SCIENCES

• With 9 tracker planes in the new configuration, the rigidity resolution of AMS with the permanent magnet is equal (within 10%) to that of the superconducting magnet.

- For helium nuclei, the MDR for the permanent magnet is 3.75 TV.
- Alignment will be done with 10'000 CR tracks per minute in orbit.

Cosmic µ⁻, July 14, 2010

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Physics of AMS: Nuclear Abundances Measurements

AMS will measure of cosmic ray spectra for nuclei, for energies from 500 MeV to 2 TeV to 1% over the 11-year solar cycle.

These spectra will provide experimental measurements of all the assumptions that go into calculating the background in searching for Dark Matter,

i.e., $p + C \rightarrow e^+$, p, ...

Search for Residual Antimatter

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

FACULTÉ DES SCIENCES

UNIVERSITÉ DE GENÈVE

AMS-

Conclusions

- AMS-02 has successfully been integrated with the long lifetime permanent magnet, to match the extended ISS lifecycle.
- The experiment performance at high energies is preserved.
- Schedule:
 - CERN test beam in final configuration from August 7 to 14, 2010.
 - US Air Force C5 will take us on August 26 to Kennedy Space Center, Florida.
 - On flight STS-134, scheduled for Feb. 26, 2011, space shuttle Endeavour will take us to the ISS.

The momentum resolution ($\Delta p/p$) is the sum of two contributions:

For both magnets, L ~ 80 cm, but in the permanent magnet B is 5 times smaller to maintain the same Δp/p we increase L1 from ~15 cm (Superconducting Magnet) to ~125 cm (permanent magnet)

Long term support from NASA already planned.

Budget Per Year (\$k)

* Budget does not include Jaunch Costs UCLEAIRE ET CORPUSCULAIRE

Page 26

UNIVERSITÉ

DE GENÈVE

Martin Pohl

FACULTÉ DES SCIENCES

AMS Vacuum Cases

Independent Alignment Systems of the AMS Tracker Planes

- 1. Alignment with CERN Test beam on 7-14 Aug 2010 using the highest energy protons (400 GeV).
- 2. Alignment with 10,000 cosmic rays every minute in every orbit

External Plane Alignment with Cosmic Rays Minute by Minute

External Planes Alignment Studies

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

Kaluza-Klein Bosons (B) are also Dark Matter candidates with a typical mass of 100 GeV to 1 TeV. A. L. Fitzpatrick, J. Kaplan, L. Randall, L-T Lian-Tao,, JHEP 0709 (2007) 013.

BB collisions produce structures in the e⁺ and p spectra

Page 31

H.C.Cheng, J.L.Feng and K.T.Matchev, Phys.Rev.Eett V89, 424 (2002) 24930-14