Search for $B_s \rightarrow J/\psi f_0(980)$ and $B_s \rightarrow hh$ at the $\Upsilon(5S)$

Jean Wicht (KEK)

3

ICHEP 2010 Paris, 22-28 July 2010

KEKB and Belle detector

KEKB : asymmetric e^+e^- collider (3.6 on 8.2 GeV for $\Upsilon(5S)$): Tsukuba, Japan **B meson factory**: $e^+e^- \rightarrow \Upsilon(4S), \Upsilon(5S) \rightarrow B\overline{B}$

Charmless: $B_{c} \rightarrow K K$

C.C.Peng et al. (Belle), arXiv:1006.5115, submitted to PRD; 23.6 fb⁻¹

- $B_s \rightarrow K^+ K^-$ and $B^0 \rightarrow \pi^+ \pi^-$ are related by SU(3)
 - Probe New Physics by comparing CP asymmetries
 London et al., PRD 70, 031502 (2004)
 - Sensitive to γ/φ₃ using the U-spin symmetry.
 Fleischer, PLB 459, 306 (1999)
- $B_s \rightarrow K^0 \overline{K}^0$: "same" BF as K⁺K⁻ but more challenging because we have to search for two K_s
 - $BF(B_s \rightarrow K_s K_s) = BF(B_s \rightarrow K^0 \overline{K}^0)/2$
 - BF(K_s $\rightarrow \pi^+\pi^-$)~70%
 - Challenging at hadroncolliders!

 $B_{c} \rightarrow J/\psi f_{0}(980)$

- Silver mode for LHCb to measure β_s , the CP-violating phase in the B_s mixing Stone et al., arXiv:0909.5442 (2009)
 - BF smaller than $B_s \rightarrow J/\psi \phi$ BUT $J/\psi f_0$ is a pure CP-eigenstate
 - No angular analysis required as in $B_s \rightarrow J/\psi \phi$
- Branching fraction
 - Extrapolation from $B_s \rightarrow J/\psi \phi$ $\frac{\mathcal{B}(B_s^0 \rightarrow J/\psi f_0) \mathcal{B}(f_0 \rightarrow \pi^+ \pi^-)}{\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) \mathcal{B}(\phi \rightarrow K^+ K^-)} \approx 0.2$ $= 0.42 \pm 0.11$ Stone et al., PRD 79, 074024 (2009) CLEO ($D_s \rightarrow f_0 e \nu$), PRD 80, 052009 (2009)

CDF's J/
$$\psi \phi \Rightarrow \mathcal{B}(B^0_s \to J/\psi f_0) \mathcal{B}(f_0 \to \pi^+\pi^-) = (1.3 - 2.7)10^{-4}$$

• Theory (QCD@LO) $\mathcal{B}(B_s^0 \to J/\psi f_0)\mathcal{B}(f_0 \to \pi^+\pi^-) = \begin{array}{c} (3.4 \pm 2.4)10^{-4} \times (50^{+7}_{-9})\% \\ \begin{array}{c} QCD (LO) \\ PRD 81, 074001 (2010) \end{array} \end{array} \xrightarrow{\text{BES, PRD 80,} \\ 052009 (2009) \end{array}$ $= \begin{array}{c} (1.6 \pm 1.3)10^{-4} \end{array}$

 $B_{s} \rightarrow J/\psi f_{0}(980)$ results

Preliminary; 23.6 fb⁻¹

- 1. Reconstruct J/ $\psi \rightarrow e^+e^-$ and $\mu^+\mu^-$ and $f_0 \rightarrow \pi^+\pi^-$
- 2. Cut on $M_{_{bc}}$, and do a 2D-fit on $M_{_{\pi\pi}}$ and ΔE
- 3. Include in the fit backgrounds from continuum (~50%), $B \rightarrow J/\psi X$ (~50%) and non-resonant $B_c \rightarrow J/\psi \pi \pi$ (small peak in ΔE).

Summary

- In a sample containing \sim 2.8 million B_s (23.6 fb⁻¹)
 - Charmless $B_s \rightarrow hh$
 - $B_s \rightarrow K^+ K^-$ observed
 - Best upper limit on $B_s \rightarrow K^0 K^0$
 - No evidence for $B_{_{\rm S}} \rightarrow \pi^+ \; \pi^-$ and $B_{_{\rm S}} \rightarrow \pi^+ \; K^-$
 - CP-eigenstates
 - No evidence of $B_s \rightarrow J/\psi f_0(980)$. Need to update with our full data sample!
 - Belle has also obtained the first observation and evidence for $B_s \rightarrow J/\psi \eta$ and $B_s \rightarrow J/\psi \eta'$. arXiv:0912.1434 (2009)
- Five times more data available! More results in the pipeline!
 - Belle has also reprocessed its data! Tracking is improved: effective luminosity is more than five times larger!

BACKUP

J. Wicht: $B_s \rightarrow J/\psi f_0(980)$ and $B_s \rightarrow hh$ at the $\Upsilon(5S)$

Adachi et al. (Belle), arXiv:0912.1434 (2009); 23.6 fb⁻¹

Adachi et al. (Belle), arXiv:0912.1434 (2009); 23.6 fb⁻¹

