Charm and Beauty Production from Secondary Vertexing at HERA

Paul Thompson (Birmingham)

for the H1 and ZEUS Collaborations

- Motivation and analysis method
- Heavy Flavour jets in photoproduction
- Heavy Flavour jets in Deep Inelastic Scattering
- Contribution of Heavy Flavours to proton structure

Heavy Flavour Analyses

- In total ~500pb⁻¹ of high energy data collected per experiment
- luminosity upgrade in 2001
- detectors adjusted
- ZEUS: silicon micro vertex detector

Many heavy flavour final analyses on full HERA I+II data. Working on publication of remaining preliminaries and combination of results

Production of Heavy Quarks

Contribution of quasi-real photons at low Q²

Direct γ

 $Q^2 < 1 \text{ GeV}^2$ Photoproduction, $Q^2 > 1 \text{ GeV}^2$ DIS

Predominantly via boson gluon fusion

Test of perturbative QCD:

multi-scale problem (M, Q, p_T)

Directly sensitive to gluon density in the proton (PDFs)

Heavy Quark Production

Number of theoretical approaches:

Massless (Zero Mass), massive (Fixed Flavour) and general mass (GM) flavour number schemes (combination of massless/massive should provide best theoretical model).

QCD Calculations:

```
Fixed order - massive FFNS NLO(\alpha_s^2) (FMNR, HVQDIS) GM-VFNS PDFs - used in latest PDF fits MSTW08 to NLO (\alpha_s^2) and NNLO (\alpha_s^3) CTEQ 6.6 to NLO (\alpha_s)
```

Monte-Carlo: LO (α_s) + Parton shower:

Collinear factorisation, DGLAP (PYTHIA, RAPGAP)

Contribution to Cross Section (DIS)

HERA I+II result:

- fraction of total DIS cross section from charm and beauty
- large charm fraction (~30%). Has influence on PDFs!
- small beauty fraction
 ~% (lower at low Q²)
- mass thresholds visible
- good description by NNLO QCD

Tagging Heavy Quarks

Heavy quarks rarely produced, use properties of beauty hadrons:

- lifetime and mass
 - reconstruction of a secondary vertex
- decay length and mass of tracks from secondary vertex
 - impact parameter

prompt

Vertex method allows measurement of all tracks to low p_T – increase statistics and reduce extrapolations to full phase space. Can compare with other methods semi-leptonic (1163 Juengst), reconstruction of charmed meson decays (1160 Jung, 1162 Roloff)

H1 and ZEUS vertex measurements

H1

- Inclusive charm and beauty in DIS
 - Eur.Phys.J. C65 (2010) 89 arXiv:0907.2643
- Charm and beauty jets in DIS DESY 10-083

ZEUS

- Beauty dijets in Photoproduction ZEUS-prel-09-005
- Beauty jets in DIS and F₂^{bb}
 ZEUS-prel-10-004

Methods to discriminate heavy flavours from light quarks and to disentangle c from b are very similar for H1 and ZEUS

Highlight the important features here...

Flavour Tagging - secondary vertex

- Use all tracks ("inclusive") with hits in silicon detectors $p_T > 0.3(0.5)$ GeV H1(ZEUS)
- 2D(3D) hits H1(ZEUS). Calculate 2D secondary vertex decay length and decay length significance $S_L=L/\sigma(L)$
- Sign of vertex given w.r.t jet axis
- Use also signed impact parameter δ
 of individual tracks

 $\alpha < 90^{\circ} \rightarrow \delta = +|\delta|$

Flavour Separation

DESY 10-083

For >2 tracks use NN

 $N_{track} \ge 3$

10³

Sign given by S₁ NN Output c/b separation

Charm and beauty asymm. due to lifetime

Light flavours mostly symmetric

Photoproduction background small

Neural Network inputs include S_1 , S_2 , S_3 , S_1 and number of silicon tracks

Fitting Flavour Fractions

Reduce contribution of lights by using "mirror image" i.e. subtract negative bins from positive.

ZEUS fit S_L in bins of M_{VTX} , H1 fit S_1 , S_2 and NN output

Perform I, c, b fits in bins of e.g. p_T^{jet} or x, Q^2 to extract F_2^{bb-10}

Photoproduction b Dijets (ZEUS)

Well described by (massive) NLO QCD

Agreement found with measurements from muon tagging (864 Geiser)

Beauty Jets In DIS (H1)

Beauty jet cross sections vs E_T^{jet} and η^{jet}

DESY 10-083

Well described by (massive) NLO QCD

Good description (as for H1 γ p analysis hep-ex/0605016)

Beauty Jets In DIS (ZEUS)

Beauty jet cross sections vs Q^2 and x. Agreement with NLO QCD, although QCD lower at low Q^2 and low x

Charm Jets In DIS (H1)

Sensitivity to scale choice. Reasonable description with scale choice.

Measurement of F₂^{cc} and F₂^{bb}

$$F_{2,meas}^{b}(x_{i},Q_{i}^{2}) = \frac{\sigma_{meas,i}}{\sigma_{theo,i}} \times F_{2,theo}^{b}(x_{i},Q_{i}^{2})$$

- Extraction of inclusive structure functions (F_L is small)
- Double differential cross section
- Use HVQDIS to calculate theoretical predictions
- Extrapolation to full phase space small for beauty
- Larger for charm, but reduced compared to exclusive methods because of low p_T track acceptance

Measurement of F₂bb

- Beauty structure function versus Q² for fixed x
- Vertex methods between H1 and ZEUS agree
- Agreement also found with semi-leptonic analyses
- NNLO predictions available
- Some differences between theories
- Data well described

Measurement of F₂^{cc}

- Charm structure function vs
 Q² for fixed x
- Higher precision tests theory
- Differences between MSTW NNLO and NLO predictions for charm. NNLO somewhat better description than NLO
- CTEQ NLO describes data
- Data being used to complement D meson and semi-leptonic measurements in combination of HERA data (1159 Corradi)

Summary

- Heavy Flavour production at HERA is a vital testing ground for perturbative QCD
- Vertex detectors are a powerful tool to extract heavy flavour cross sections
- In general a good description is provided by pQCD
- The vertexing method allows to make measurements of the contribution of heavy flavours to the proton structure function. Charm data precision provides constraint for theory. Beauty well described.
- Better discrimination to come from combination of results.

Extra Slides

Flavour Tagging - Vertex Detectors

ZEUS tracking

(MicroVertexDetector)

H1 CentralSiliconTracker

Half Wheel

Barrel module

H1 and ZEUS vertex detectors:

- Multi-layered single and double sided silicon microstrip detectors
- Combine precise spatial information from vertex detectors with tracks from central drift chambers
- Resolution of impact parameter in transverse plane $< 100 \mu m$

Fitting Flavour Fractions

Example of ZEUS 2D M_{VTX} and S_L fitting for DIS

Measurement of F₂bb

Comparison of vertexing results with semi-leptonic

Comparison with Muon Tagged Data

- Extrapolate muon data to full phase space (small uncertainty)
- H1 and ZEUS data from muon tagging lie systematically above vertex data at either high or low Q²