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Introduction

AdS/CFT versus AdS/QCD

@ AdS/CFT correspondence:

9 strongly coupled 4D conformal field theory
Conformal invariance group: SO(4, 2)

@ weakly coupled 5D string theory
weak coupling — classical metric background Anti-deSitter isometry group:
S0(4,2)
@ QCD not conformally invariant (dynamical mass scale) but
9 conformally invariant classical lagrangian

9 asymptotic freedom but
@ at high-energy stringy corrections are expected

@ semi-classical approximation no longer valid

@ Does the AJS/CFT dictionary apply to QCD?
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The ADS/CFT correspondence

String « CFT correspondence

@ correspondence between a IIB string theory compactified on AdSs x S
and a ' = 4 super-Yang-Mills theory

@ Field « Operator correspondence:  (x=4d-vector, z=holographic direction)
O(X): operator in CFT to create asymptotic states
¢o(X): source for that operator

Duality:
® ¢o(X) = boundary value of the bulk field ¢(X, ) (up to dimensionful prefactors)
@ both generating function in CFT and AdS are related through:

Zcrr|go] = <ef d4x<po(z)o(z>> T = Zaring | (%, 2)

Maldacena; Witten; Gubser, Klebanov, Polyakov
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The ADS/CFT correspondence

More on the AdSs x S dual string theory

@ 5d metric with Lorentz group SO(1, 3) as isometry subgroup:

o = () (x. 0 + 7). " =g =a (@™,
n =diag(—1,1,1,1,1), m=0,1,2 3 4.
@ AdS metric: a(z) = R/z(negative curvature, corresponding to a negative

cosmological constant) /=g = R°/Z (R = 1 from now on)
@ UV limit z— zyn : CFT boundary
o field content:
@ 5d vector U(1) field Am(X, z), dual to the electromagnetic current

@ 5d massive scalar field ®(z, x) dual to an operator creating the spinless
target
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The ADS/CFT correspondence

SUGRA — CFT correspondence

In the large N and large 't Hooft coupling A = g&yN limit, the 1IB string theory
reduces to a [IB SUGRA theory in 10 dimensions:

7~ BN~ guN > 1
S
R: AdS and S radius
Is : string length

gs < 1land R > ls: string theory — classical SUGRA
(with decoupling of massive string excitations)
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From AdS/CFT to AdS/QCD correspondence

Conformal invariance breaking due to confinement

@ Hard-wall model: IR cut-off for z= 1/A = mass-gap
Polchinski,s Strassler

@ Soft-wall model: the bulk field ®(z, x) is coupled to a background dilaton
field x(2) (with the UV constraint that x(z) — 0 for z— 0)
= Regge trajectories
Karch, Katz, Son, Stephanov
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The soft-wall model: two-point function from holographic principle

]

©

(2

©

©

Action in AdS
action for the propagation of @ in this background:
&:%/&mm5®*@@%m+ﬁ&) 1)
classical field equation for this free field ®(©:
2006 + 2e¥o, (z*3e*><az<1><°>) - m2o© . @)

looking for plane-wave solution in 4d space:
3O (x,2) = " d(2)

complete set of Kaluza-Klein solutions {®(z), n € N} with
<<f>‘ <f>/> :/ dzz % X® ¢*(2) 9/ (2)
0

Green function: (Ag — mg) G(x,z X, 7) = (x—x)6(z—2)

X <4
750
Fourier transform: bulk to bulk propagator = Kéllen-Lehman spectral
representation when summing over the KK excitations:

~ >\ 3% (2)®n(2)

G(zZ;p)=— Y 22,

n=0
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The soft-wall model: two-point function from holographic principle

QCD two-point function

@ Action of a classical solution leaves only the boundary term (a(z) = 1/2):
si0] =5 [ dxvTad20 = 3o (znn) [ d'x @xzm) S22
Z=Zmin z S

@ Green function relate bulk values of non-normalizable classical solution
®(x, 2) to boundary values ®s(X') = ® (X, Znin):

B(x,2) = /d4x’ Go(X, Z X, Zmin) Ps(X) .

@ Classical partition function:

Zso[‘ﬁs]z/ gl gl
@ (X,Zmin ) =Ps(X)

@ = Holographic identification of two-point functions from AdS to CFT:
1 0%Z(®g]
Z[Cps] 8<I>s(x)8<1>s(x’)

_ 1 e ¥ —x azqsn zn.n)¢n(zn.n))
’W/ & )Za rin) g2 4 g —

~ a’(2) 2G(x — X2, Zmin)

(00N} = a
Z=Zmin
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Calculation of n-point functions in AdS/QCD

AdS < QCD

@ interaction between bulk ® and bulk U(1) fields:
&dS [¢7 (p*?Am]

_ /d4xdz V=g (—%F”"Fm +e* ((D"2)"Dn® + mé@*@))

(no dilaton for Am(x, z) : would break electromagnetic conformal invariance)
@ rely on AdS/QCD correspondence:

Zoco(C,T,n+ ) <exp </d4 (n, + J“+c0+c0*)>
QCD
= ep (~Slis[(0), ©* (), A™(n, -+ 1))

@ c,C,n+ n:4d sources for the CFT which appear as boundary conditions for
the 5d non-normalizable bulk fields

9 Correlation functions of CFT operators can be obtained by expanding to
linear-order with respect to the sources

9@ QCD operators are coupled to asymptotic states which are boundary
conditions of normalizable bulk fields ®(®, &*(0) (scalar probe)
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Calculation of n-point functions in AdS/QCD

Electromagnetic current

@ the electromagnetic current is dual to a massless non-normalizable 5d
vector field with a U(1) gauge invariance, An(X, )

@ Maxwell equations:
O™z *Fm) =0,  V¥n
@ we are looking for general plane-wave solutions:
A.(%2) =n, éYAZ), A(x2) =€TA(z), nP=1
@ in the Lorentz-like gauge condition
A, + 20, (z*lAz) -0
Maxwell equations reduce to
A2 =20, (z_lf)zA(z))
Po(2) = —i qd No.A2)

2

@ Boundary condition: lime—oA(z) =1

= A2 =QzKi(Q2) (@F=q-q)
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3-point functions in AdS/QCD

3-point function: application to DIS

@ three-point correlation functions can be computed and applied for
describing DIS

IMT™ ~ 37 5(MZ + (P +a)%) (PI3 (0)|P + 0, X) (P + 0, X|3" (0)|P)

Polchinski, Strassler
Problem when trying to map with a partonic description: Callan-Gross +
Bjorken scaling not fulfilled
@ extension for intermediate vector states X for a scalar probe
Pire, Roiesnel, Szymanowski, S.W.
9 scalar + vector state: should in principle improve the partonic description
through a parton-hadron duality
9 Callan-Gross relation requires a fine tuning of the 5d coupling

@ Bjorken scaling can be achieved with unatural conformal dimension A =1
for the bulk field
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4-point functions in AdS/QCD: Holographic Compton amplitude

4-point function: application to Compton scattering
@ our aim is now to study the Compton scattering v*)A — v A’ on a
spinless, or spin-averaged target

@ this requires to study a 4-point function, this is the first non-trivial
correlator involving the propagation inside the bulk

@ using
Zoco(c,T,n+N) = <@(p </ d*x (n, +n,)Jd* +cO+ cof)>

= e (- s [#(c), & (©), A", + 1))

one should thus extract the coefficient of tn, n, c

QCD

Gao, Xiao; Marquet, Roiesnel, S.W.
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4-point functions in AdS/QCD: Holographic Compton amplitude

The Compton amplitude from holographic principle

@ Solve iteratively the coupled classical equations, in terms of the free
non-normalizable bulk fields A©, *©  $©

@ Deduce the classical action, up to €
the notation (%) is now dropped for clarity; y = (x,2) and dy = d*xdz

| = ie/dy\/—_ge’XAm(d)*am@ — DOn®™) +e2/dy\/—_ge*XAmAm<1>*<1>
+€ [ iy vTge /g A AY)
{ (2 0)m — (@ne" ) (20/)0% — @h2(¥)))
+(@()0m — (m(y)) ) (2" ()0 — (D52 (Y))) } Go(y:Y) + ()
@ boundary condition at z= 0 for A®, *©@ &© aren, +n,,c,andc

@ they enter in a linear way in these fields

= tn,n,c coefficient = A® A® ¢+ ¢ coefficient
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The Compton amplitude from holographic principle

The tree-like structure of the Compton amplitude

contracting now the result on the physical plane wave boundary conditions for
A© (non-normalizable), *@, © (normalizable) gives

€ TH e = 2¢? / dy /—ge™ X AT (y)AL(Y)D* (y) 2(y) contact interaction

+¢ [any o yge <

X AMYA(Y)[D(Y)Om — (Om@(Y)] (2" (V)0 — (8,27 (¥)]G(y;y')  schannel diagram

y
+ ez/dydy’ V=g Xy/—ge X /%

x A YA"Y)[@(Y)On — (Bm@ ()] [(®7 (V)] — (94" (V))G(yiy)  uchannel diagram
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Compton amplitude off an unpolarized target

Compton kinematics

@ Compton amplitude off an unpolarized target A:
7" () + P(p1) — 7" (GR) + P(p2) ,
T =1 [ a3 T (3,002, (-x/2)) o)
@ Choose g1, gz and p = p1 + p2 as the three independent momenta
— 10 independent parity-conserving tensors of rank 2
@ Electromagnetic gauge invariance:
BT =T =0.

= b5 linear independent constraints
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Compton amplitude off an unpolarized target

Compton form factors

= 5 linear independent form factors, function of 6 independent scalar
invariants:

v B« L e e L (Qu- qz)
TH =V ( pro M1 _ 2 +
19 P @ % PR
+Vs, pu o qét (p ql)) (p 7 q (p qz))
ql q2

& —qf —(q;?)) (qf ) )

Gz
+Valp* = q;lt (pgl)) (qtl/ —q (mgz))
ay a2
+ V5 qg _ qit (qng)) <pu _ q12/ (p(gZ)) ,
ay a2

5
= Vi(pL, 5, G, 6B, S, U) VI (P, O, )
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Compton amplitude off an unpolarized target

The Virtual Compton Scattering and Real Compton Scattering amplitudes

® VCS amplitude: @2 = 0
Vit (G- %) Va+(p-a)Vs =0,
(P- %) Vo + (th- ) Va =0,
= 3 independent Compton form factors

@ Real compton amplitude: @2 = g3 = O:

(p-a)(p- %) Vs

Vit (@ -d)Va=—(p-dq)Va=—(p-G) Vs =
01 - Q2

= 2 independent Compton form factors
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Compton amplitude off an unpolarized target

Amplitude from the semi-classical expansion

@ 3 Tree-level diagrams at order €:
QuTe;, =28 [ dyy=ge  ATAY) B () 2(Y)
+ € / dydy’ v/—ge X v/—ge™ (AT(Y)A™(Y) + A (y)A(Y))
% (@) — (Gm®(¥))) (@ (V)% — (952" (V) ) Goly:Y)
@ Initial and final states:

B(x,2) = M i(2), B*(X,Z) =e P gy(2),

Au(X2) = . €M%A(2),  A(x,2) = —i%éﬁ1~xazA1(z) ,
1
ALK, Z) = e A(Z), A(X,Z) = iea—gze_iqz‘xlf)z/Az(z’) .
2
with
A1(2) = QuzKi(Qu2), Ax(2) = QzKi(Q22)
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Compton amplitude off an unpolarized target

Result for the on-shell Compton amplitude

@ On-shell gauge-invariant amplitude (p? = p3 = —n?):

T = @ 2CIVE Oy (VY VL) + O (VY + VL)
where
Ct (rn27 qi q; S, U) = fl(rnzv qiv q§7 S) + fl(mzv qgv qi U) .
= only 3 Compton form factor out of a possible 5

@ Form factors F1(n?, 62, g2, k%) and C1(m?, @2, g3) from the AdS/QCD
correspondence:

F1 (rT127Q§,Q§,k2> = // dz1 dz, 7 e X(®) Ay(z1) ¢i(z1)
x Go(z1, 22, k) ¢f (22) A} (z2) Z, e X (%)

Ca(n?, . B) = | dez %6 O m(@) A5 (2) (2 6 (2
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Relation with Deep Inelastic Scattering

Doubly spacelike Compton amplitude
’}/*A — ’YXA/

@ Form factor 71 through the Kéllen-Lehman spectral representation of the
Green function:

> 2 * 2 9 o
7 (i) = 3 L méz»?i)n; L P

n=0 p=mt p=n
QZ
vt @) = Q [ ez e K@ an@ i@
@ Vertex function I': pZ =n?

2 2
<p2|3“(0)|pl>:F(D§,p§,k2)(p“—%k“) p=pi+p, k=p—p

@ Electromagnetic form factor:
QZ
F’Y(Qz) = F(mzv m27 QZ) = cl(m27 sz 0) S%F

— Q/dzz_ze_X(Z)Kl(QZ) |6m(2)|*
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Relation with Deep Inelastic Scattering

From doubly spacelike Compton amplitude to DIS:
from~y*A — v*Ato v*A — X

9 9

@ Absorptive part of the forward Compton scattering amplitude: >—<
R ‘

XBjorken = —% m m

ImTH (of,s) = & (p“ + ;tq“) (p” + ;tq”) i6(5+ ) [P, nﬁqz)(z ,
n=0

~& (%)_1 mﬁ}S(F(mz, -, qz)‘2 <p“ + %q“> <p” + )%q)

= only F_ survives (i.e. F; = 0)

@ Scaling properties (x(2) e 0): governed by
z—

1/Q
rtm @)~ [ e 66
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Scaling behavior of vertex function
o P>n?, @2k
hadron state:  ¢(2) ~ Z°,

z—0
A
rert, . @) om) () F(2)
A 2
%Fz(QZ,X) % (é) F2(x), x= Q2Q_37 s=np.
, 1\t
= F(Q%,X) x <§> callsfor A =1

o >, P>k
0(2) ~ 7, ¢n(2) ~ 2

z—0 z—0

1

A—1
§> callsfor A =2

= F,(Q°) (

Brodsky de Teramond

@ the same scaling obtained for structure function and form factors are
generic to AdS/QCD correspondence, impossible to reconcile with a
partonic picture
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Virtual Compton scattering

~*A — A from AdS/QCD correspondence

7(Q@) v
n? n?

@ Virtual incoming photon (g = Q@?), real outgoing photon (qg =0):
201+ (- %2)Ct + (p-a2)C- =0,
(P %) Cy + (A G2)C— =0.

@ AdJS/QCD VCS amplitude has the same tensorial structure as point-like scalar
electrodynamics:

2mf +s+u

mﬁzgqmﬁﬁﬁ(ﬂmw—ﬁfiﬂﬁiﬁ(

VZ,;/,V + V3,;1,V)

L _sou
(M2 + s)(m? + u)

@ Electromagnetic form factor is the unique form factor of VCS amplitude (out a
possible 3), and contains the whole internal structure of the hadron:

Cu(n?,f.0) = [ dzz-%e X
0

(C1(n?,0,0) = 1)

V4,u1/ + V5,;1,V)) .

5,“(2)’2 AL2)
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Virtual Compton scattering

Deeply Virtual Compton Scattering

V@) 7

P

e e

@ In perturbative QCD, these form factors can in principle be related,
through factorization, to generalized parton distributions (GPDs)

@ Partonic interpretation based on the convolution of real GPDs with
coefficient functions which contain both a real and an imaginary part
= problem with the holographic DVCS amplitude which has no
absorptive part
calling for stringy corrections?

@ Asymptotic behavior in Q? of the holographic DVCS cross-section
governed by the power-law behavior of the electromagnetic form factor.

@ Problem with the partonic interpretation of a power-law behavior in
accordance with the dimensional counting rules: contradiction between
the ~ form-factor scaling (calling for A = 2) and scaling of the DVCS
amplitude (calling for A = 1)
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Polarizabilities

Real Compton scattering

(k) 7(t2)

m m
@ Real Compton scattering (g = g3 = 0):

Y L O p-qu p- 0 )
T =y (g™ — Vo [ pt — - -
Fes 1<g CI1~CI2>+ 2<p q1'q2q2> (p O - qzq1

@ corrections to Thompson scattering which are quadratic in the energy of
the photons = static polarizabilities defined in lab-frame p; = 0:
g = wi(1,G), "-’| < mfr

A(ym — ym) = 2671 - & + 8rMy wiwz (e el - & + Bu (e x Go) - (€ x B2))

@ Relation to Compton form factors:

2

electricc.  8mmag = 0 (V14 (Va— Vo)1 - G2)
Ow10w2 wi=wp=0

magnetic: 8mmpw = (Va2 — V3)|

w1=wp=0 "
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Polarizabilities

Static polarisabilities from AdS/QCD

@ Holographic Compton amplitude = Static polarizabilities vanish
@ This contradict the most recent experimental values
@ Threshold theorem:

Cl(mz,0,0):/ dzz e X |Dpy(2)
0

~ 2
‘:1.

@ Real Compton scattering on a scalar target in holographic models with
minimal coupling to the photon = point-like scalar electrodynamics in the
tree level approximation!

@ Non-vanishing polarizabilities = non-minimal coupling(s) to the photon
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Polarizabilities

Static polarisabilities from AdS/QCD in non-minimal SUGRA
Chiral perturbation theory analogy

@ Same problematics encountered in the calculation of the pion
polarizabilities in xPT:

%"
Qg = m.FZ (Ls + Lio) , ag+pu =0,

CiLeF,,Tr (QD“U(D uyf + Q(D”U)TD”U> 4 LioF P Tr (Qu QUT) ,
D,U = 8,U +ieA, [Q,U]

ae # 0and Bu # O at order 4 in xPT
@ Phenomenological 5d Lagrangians: non-minimal coupling to be added

ASas[®, @, A" = /d“xdzw/_—ge‘x <iglg Fmn(D™®(D"®)* — (D"®)*D"®)

+ gzéFmanq)*q)) .
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Conclusion

@ AdS/QCD Compton amplitude is trivial in the low-energy limit

@ AdS/QCD Compton amplitude has no partonic interpretation in the
high-energy limit

@ Most popular AdS/QCD models incorporating flavor symmetry do not
cure all the problems

@ Neglecting stringy corrections is maybe not satisfactory (e.g.: might be
the only source of absorptive parts)
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